Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .gitignore +14 -0
- 123456789.jpg +3 -0
- down.sh +25 -0
- samples/sample_0.jpg +0 -0
- samples/sample_1.jpg +0 -0
- samples/sample_2.jpg +0 -0
- samples/sample_decoded.jpg +0 -0
- samples/sample_real.jpg +0 -0
- test.ipynb +192 -0
- train_vae.py +569 -0
- transfer_simplevae.ipynb +240 -0
- untitled.txt +0 -0
- vae/config.json +48 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
123456789.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Jupyter Notebook
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.pyc
|
| 4 |
+
.ipynb_checkpoints/
|
| 5 |
+
*.ipynb_checkpoints/*
|
| 6 |
+
.ipynb_checkpoints/*
|
| 7 |
+
src/samples
|
| 8 |
+
# cache
|
| 9 |
+
cache
|
| 10 |
+
datasets
|
| 11 |
+
test
|
| 12 |
+
wandb
|
| 13 |
+
nohup.out
|
| 14 |
+
|
123456789.jpg
ADDED
|
Git LFS Details
|
down.sh
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
TARGET_DIR="/workspace/d23"
|
| 4 |
+
mkdir -p "$TARGET_DIR"
|
| 5 |
+
|
| 6 |
+
BASE_URL="https://huggingface.co/datasets/AI-Art-Collab/dtasettar23/resolve/main/d23.tar."
|
| 7 |
+
|
| 8 |
+
(
|
| 9 |
+
# Устанавливаем `set -e` внутри subshell, чтобы он завершился при первой ошибке curl
|
| 10 |
+
set -e
|
| 11 |
+
# Попробуем от 'a' до 'z' для первого символа суффикса
|
| 12 |
+
for c1 in {a..z}; do
|
| 13 |
+
# Попробуем от 'a' до 'z' для второго символа суффикса
|
| 14 |
+
for c2 in {a..z}; do
|
| 15 |
+
suffix="${c1}${c2}"
|
| 16 |
+
url="${BASE_URL}${suffix}"
|
| 17 |
+
echo "Fetching: $url" >&2
|
| 18 |
+
# Качаем часть архива. --fail заставит curl завершиться с ошибкой, если файла нет.
|
| 19 |
+
curl -LsS --fail "$url"
|
| 20 |
+
done
|
| 21 |
+
done
|
| 22 |
+
) 2>/dev/null | tar -xv -C "$TARGET_DIR" --wildcards '*.png'
|
| 23 |
+
# └─ 1 ─┘ └────────── 2 ──────────┘ └─────────── 3 ───────────┘
|
| 24 |
+
|
| 25 |
+
echo "Extraction of PNG files finished. Check $TARGET_DIR"
|
samples/sample_0.jpg
ADDED
|
samples/sample_1.jpg
ADDED
|
samples/sample_2.jpg
ADDED
|
samples/sample_decoded.jpg
ADDED
|
samples/sample_real.jpg
ADDED
|
test.ipynb
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 7,
|
| 6 |
+
"id": "6ca10d55-03ed-4c8b-b32b-8d2f94d77162",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stderr",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"The config attributes {'block_out_channels': [128, 256, 512, 512, 512], 'force_upcast': False} were passed to AsymmetricAutoencoderKL, but are not expected and will be ignored. Please verify your config.json configuration file.\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"name": "stdout",
|
| 18 |
+
"output_type": "stream",
|
| 19 |
+
"text": [
|
| 20 |
+
"test log-variance: 0.065\n",
|
| 21 |
+
"Готово\n"
|
| 22 |
+
]
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"source": [
|
| 26 |
+
"import torch\n",
|
| 27 |
+
"from PIL import Image\n",
|
| 28 |
+
"from diffusers import AutoencoderKL,AsymmetricAutoencoderKL\n",
|
| 29 |
+
"from torchvision.transforms.functional import to_pil_image\n",
|
| 30 |
+
"import matplotlib.pyplot as plt\n",
|
| 31 |
+
"import os\n",
|
| 32 |
+
"from torchvision.transforms import ToTensor, Normalize, CenterCrop\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"# путь к вашей картинке\n",
|
| 35 |
+
"IMG_PATH = \"123456789.jpg\"\n",
|
| 36 |
+
"OUT_DIR = \"test\"\n",
|
| 37 |
+
"device = \"cuda\"\n",
|
| 38 |
+
"dtype = torch.float16 \n",
|
| 39 |
+
"os.makedirs(OUT_DIR, exist_ok=True)\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"# список VAE\n",
|
| 42 |
+
"VAES = {\n",
|
| 43 |
+
" \"test\": \"/workspace/simple_vae2x\",\n",
|
| 44 |
+
"}\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"def load_image(path):\n",
|
| 47 |
+
" img = Image.open(path).convert('RGB')\n",
|
| 48 |
+
" # обрезаем до кратности 8\n",
|
| 49 |
+
" w, h = img.size\n",
|
| 50 |
+
" img = CenterCrop((h // 8 * 8, w // 8 * 8))(img)\n",
|
| 51 |
+
" tensor = ToTensor()(img).unsqueeze(0) # [0,1]\n",
|
| 52 |
+
" tensor = Normalize(mean=[0.5]*3, std=[0.5]*3)(tensor) # [-1,1]\n",
|
| 53 |
+
" return img, tensor.to(device, dtype=dtype)\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"# обратно в PIL\n",
|
| 56 |
+
"def tensor_to_img(t):\n",
|
| 57 |
+
" t = (t * 0.5 + 0.5).clamp(0, 1)\n",
|
| 58 |
+
" return to_pil_image(t[0])\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"def logvariance(latents):\n",
|
| 61 |
+
" \"\"\"Возвращает лог-дисперсию по всем элементам.\"\"\"\n",
|
| 62 |
+
" return torch.log(latents.var() + 1e-8).item()\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"def plot_latent_distribution(latents, title, save_path):\n",
|
| 65 |
+
" \"\"\"Гистограмма + QQ-plot.\"\"\"\n",
|
| 66 |
+
" lat = latents.detach().cpu().numpy().flatten()\n",
|
| 67 |
+
" plt.figure(figsize=(10, 4))\n",
|
| 68 |
+
"\n",
|
| 69 |
+
" # гистограмма\n",
|
| 70 |
+
" plt.subplot(1, 2, 1)\n",
|
| 71 |
+
" plt.hist(lat, bins=100, density=True, alpha=0.7, color='steelblue')\n",
|
| 72 |
+
" plt.title(f\"{title} histogram\")\n",
|
| 73 |
+
" plt.xlabel(\"latent value\")\n",
|
| 74 |
+
" plt.ylabel(\"density\")\n",
|
| 75 |
+
"\n",
|
| 76 |
+
" # QQ-plot\n",
|
| 77 |
+
" from scipy.stats import probplot\n",
|
| 78 |
+
" plt.subplot(1, 2, 2)\n",
|
| 79 |
+
" probplot(lat, dist=\"norm\", plot=plt)\n",
|
| 80 |
+
" plt.title(f\"{title} QQ-plot\")\n",
|
| 81 |
+
"\n",
|
| 82 |
+
" plt.tight_layout()\n",
|
| 83 |
+
" plt.savefig(save_path)\n",
|
| 84 |
+
" plt.close()\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"for name, repo in VAES.items():\n",
|
| 87 |
+
" if name==\"test\":\n",
|
| 88 |
+
" vae = AsymmetricAutoencoderKL.from_pretrained(repo, subfolder=\"vae\", torch_dtype=dtype).to(device)\n",
|
| 89 |
+
" else:\n",
|
| 90 |
+
" vae = AutoencoderKL.from_pretrained(repo, torch_dtype=dtype).to(device)#, subfolder=\"vae\", variant=\"fp16\"\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" cfg = vae.config\n",
|
| 93 |
+
" scale = getattr(cfg, \"scaling_factor\", 1.)\n",
|
| 94 |
+
" shift = getattr(cfg, \"shift_factor\", 0.0)\n",
|
| 95 |
+
" mean = getattr(cfg, \"latents_mean\", None)\n",
|
| 96 |
+
" std = getattr(cfg, \"latents_std\", None)\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" C = 16 # 4 для SDXL\n",
|
| 99 |
+
" if mean is not None:\n",
|
| 100 |
+
" mean = torch.tensor(mean, device=device, dtype=dtype).view(1, C, 1, 1)\n",
|
| 101 |
+
" if std is not None:\n",
|
| 102 |
+
" std = torch.tensor(std, device=device, dtype=dtype).view(1, C, 1, 1)\n",
|
| 103 |
+
" if shift is not None:\n",
|
| 104 |
+
" shift = torch.tensor(shift, device=device, dtype=dtype)\n",
|
| 105 |
+
" else:\n",
|
| 106 |
+
" shift = 0.0 \n",
|
| 107 |
+
"\n",
|
| 108 |
+
" scale = torch.tensor(scale, device=device, dtype=dtype)\n",
|
| 109 |
+
"\n",
|
| 110 |
+
" img, x = load_image(IMG_PATH)\n",
|
| 111 |
+
" img.save(os.path.join(OUT_DIR, f\"original.jpg\"))\n",
|
| 112 |
+
"\n",
|
| 113 |
+
" with torch.no_grad():\n",
|
| 114 |
+
" # encode\n",
|
| 115 |
+
" latents = vae.encode(x).latent_dist.sample().to(dtype)\n",
|
| 116 |
+
" if mean is not None and std is not None:\n",
|
| 117 |
+
" latents = (latents - mean) / std\n",
|
| 118 |
+
" latents = latents * scale + shift\n",
|
| 119 |
+
"\n",
|
| 120 |
+
" lv = logvariance(latents)\n",
|
| 121 |
+
" print(f\"{name} log-variance: {lv:.3f}\")\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" # график\n",
|
| 124 |
+
" plot_latent_distribution(latents, f\"{name}_latents\",\n",
|
| 125 |
+
" os.path.join(OUT_DIR, f\"dist_{name}.png\"))\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" # decode\n",
|
| 128 |
+
" latents = (latents - shift) / scale\n",
|
| 129 |
+
" if mean is not None and std is not None:\n",
|
| 130 |
+
" latents = latents * std + mean\n",
|
| 131 |
+
" rec = vae.decode(latents).sample\n",
|
| 132 |
+
"\n",
|
| 133 |
+
" tensor_to_img(rec).save(os.path.join(OUT_DIR, f\"decoded_{name}.png\"))\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"print(\"Готово\")\n"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "code",
|
| 140 |
+
"execution_count": 5,
|
| 141 |
+
"id": "5e930fd3-0aa5-4ed6-beab-e871df009125",
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [
|
| 144 |
+
{
|
| 145 |
+
"name": "stdout",
|
| 146 |
+
"output_type": "stream",
|
| 147 |
+
"text": [
|
| 148 |
+
"Collecting scipy\n",
|
| 149 |
+
" Downloading scipy-1.16.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (62 kB)\n",
|
| 150 |
+
"Requirement already satisfied: numpy<2.6,>=1.25.2 in /usr/local/lib/python3.12/dist-packages (from scipy) (2.1.2)\n",
|
| 151 |
+
"Downloading scipy-1.16.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (35.7 MB)\n",
|
| 152 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.7/35.7 MB\u001b[0m \u001b[31m58.9 MB/s\u001b[0m \u001b[33m0:00:00\u001b[0mm0:00:01\u001b[0m00:01\u001b[0m\n",
|
| 153 |
+
"\u001b[?25hInstalling collected packages: scipy\n",
|
| 154 |
+
"Successfully installed scipy-1.16.2\n"
|
| 155 |
+
]
|
| 156 |
+
}
|
| 157 |
+
],
|
| 158 |
+
"source": [
|
| 159 |
+
"!pip install scipy"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": null,
|
| 165 |
+
"id": "72785e98-5dad-48a3-809b-3ab9755ac9db",
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"outputs": [],
|
| 168 |
+
"source": []
|
| 169 |
+
}
|
| 170 |
+
],
|
| 171 |
+
"metadata": {
|
| 172 |
+
"kernelspec": {
|
| 173 |
+
"display_name": "Python 3 (ipykernel)",
|
| 174 |
+
"language": "python",
|
| 175 |
+
"name": "python3"
|
| 176 |
+
},
|
| 177 |
+
"language_info": {
|
| 178 |
+
"codemirror_mode": {
|
| 179 |
+
"name": "ipython",
|
| 180 |
+
"version": 3
|
| 181 |
+
},
|
| 182 |
+
"file_extension": ".py",
|
| 183 |
+
"mimetype": "text/x-python",
|
| 184 |
+
"name": "python",
|
| 185 |
+
"nbconvert_exporter": "python",
|
| 186 |
+
"pygments_lexer": "ipython3",
|
| 187 |
+
"version": "3.12.3"
|
| 188 |
+
}
|
| 189 |
+
},
|
| 190 |
+
"nbformat": 4,
|
| 191 |
+
"nbformat_minor": 5
|
| 192 |
+
}
|
train_vae.py
ADDED
|
@@ -0,0 +1,569 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
import os
|
| 3 |
+
import math
|
| 4 |
+
import re
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
import random
|
| 8 |
+
import gc
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
import torchvision.transforms as transforms
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from torch.utils.data import DataLoader, Dataset
|
| 15 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
+
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
+
# QWEN: импорт класса
|
| 18 |
+
from diffusers import AutoencoderKLQwenImage
|
| 19 |
+
from diffusers import AutoencoderKLWan
|
| 20 |
+
|
| 21 |
+
from accelerate import Accelerator
|
| 22 |
+
from PIL import Image, UnidentifiedImageError
|
| 23 |
+
from tqdm import tqdm
|
| 24 |
+
import bitsandbytes as bnb
|
| 25 |
+
import wandb
|
| 26 |
+
import lpips # pip install lpips
|
| 27 |
+
from collections import deque
|
| 28 |
+
|
| 29 |
+
# --------------------------- Параметры ---------------------------
|
| 30 |
+
ds_path = "/workspace/d23"
|
| 31 |
+
project = "vae"
|
| 32 |
+
batch_size = 4
|
| 33 |
+
base_learning_rate = 6e-6
|
| 34 |
+
min_learning_rate = 9e-7
|
| 35 |
+
num_epochs = 50
|
| 36 |
+
sample_interval_share = 10
|
| 37 |
+
use_wandb = True
|
| 38 |
+
save_model = True
|
| 39 |
+
use_decay = True
|
| 40 |
+
optimizer_type = "adam8bit"
|
| 41 |
+
dtype = torch.float32
|
| 42 |
+
|
| 43 |
+
model_resolution = 256
|
| 44 |
+
high_resolution = 512
|
| 45 |
+
limit = 0
|
| 46 |
+
save_barrier = 1.03
|
| 47 |
+
warmup_percent = 0.01
|
| 48 |
+
percentile_clipping = 99
|
| 49 |
+
beta2 = 0.997
|
| 50 |
+
eps = 1e-8
|
| 51 |
+
clip_grad_norm = 1.0
|
| 52 |
+
mixed_precision = "no"
|
| 53 |
+
gradient_accumulation_steps = 4
|
| 54 |
+
generated_folder = "samples"
|
| 55 |
+
save_as = "vae"
|
| 56 |
+
num_workers = 0
|
| 57 |
+
device = None
|
| 58 |
+
|
| 59 |
+
# --- Режимы обучения ---
|
| 60 |
+
# QWEN: учим только декодер
|
| 61 |
+
train_decoder_only = True
|
| 62 |
+
full_training = False # если True — учим весь VAE и добавляем KL (ниже)
|
| 63 |
+
kl_ratio = 0.00
|
| 64 |
+
|
| 65 |
+
# Доли лоссов
|
| 66 |
+
loss_ratios = {
|
| 67 |
+
"lpips": 0.75,
|
| 68 |
+
"edge": 0.05,
|
| 69 |
+
"mse": 0.10,
|
| 70 |
+
"mae": 0.10,
|
| 71 |
+
"kl": 0.00, # активируем при full_training=True
|
| 72 |
+
}
|
| 73 |
+
median_coeff_steps = 256
|
| 74 |
+
|
| 75 |
+
resize_long_side = 1280 # ресайз длинной стороны исходных картинок
|
| 76 |
+
|
| 77 |
+
# QWEN: конфиг загрузки модели
|
| 78 |
+
vae_kind = "kl" # "qwen" или "kl" (обычный)
|
| 79 |
+
|
| 80 |
+
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 81 |
+
|
| 82 |
+
accelerator = Accelerator(
|
| 83 |
+
mixed_precision=mixed_precision,
|
| 84 |
+
gradient_accumulation_steps=gradient_accumulation_steps
|
| 85 |
+
)
|
| 86 |
+
device = accelerator.device
|
| 87 |
+
|
| 88 |
+
# reproducibility
|
| 89 |
+
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 90 |
+
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
|
| 91 |
+
torch.backends.cudnn.benchmark = False
|
| 92 |
+
|
| 93 |
+
# --------------------------- WandB ---------------------------
|
| 94 |
+
if use_wandb and accelerator.is_main_process:
|
| 95 |
+
wandb.init(project=project, config={
|
| 96 |
+
"batch_size": batch_size,
|
| 97 |
+
"base_learning_rate": base_learning_rate,
|
| 98 |
+
"num_epochs": num_epochs,
|
| 99 |
+
"optimizer_type": optimizer_type,
|
| 100 |
+
"model_resolution": model_resolution,
|
| 101 |
+
"high_resolution": high_resolution,
|
| 102 |
+
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 103 |
+
"train_decoder_only": train_decoder_only,
|
| 104 |
+
"full_training": full_training,
|
| 105 |
+
"kl_ratio": kl_ratio,
|
| 106 |
+
"vae_kind": vae_kind,
|
| 107 |
+
})
|
| 108 |
+
|
| 109 |
+
# --------------------------- VAE ---------------------------
|
| 110 |
+
def get_core_model(model):
|
| 111 |
+
m = model
|
| 112 |
+
# если модель уже обёрнута torch.compile
|
| 113 |
+
if hasattr(m, "_orig_mod"):
|
| 114 |
+
m = m._orig_mod
|
| 115 |
+
return m
|
| 116 |
+
|
| 117 |
+
def is_video_vae(model) -> bool:
|
| 118 |
+
# WAN/Qwen — это видео-VAEs
|
| 119 |
+
if vae_kind in ("wan", "qwen"):
|
| 120 |
+
return True
|
| 121 |
+
# fallback по структуре (если понадобится)
|
| 122 |
+
try:
|
| 123 |
+
core = get_core_model(model)
|
| 124 |
+
enc = getattr(core, "encoder", None)
|
| 125 |
+
conv_in = getattr(enc, "conv_in", None)
|
| 126 |
+
w = getattr(conv_in, "weight", None)
|
| 127 |
+
if isinstance(w, torch.nn.Parameter):
|
| 128 |
+
return w.ndim == 5
|
| 129 |
+
except Exception:
|
| 130 |
+
pass
|
| 131 |
+
return False
|
| 132 |
+
|
| 133 |
+
# загрузка
|
| 134 |
+
if vae_kind == "qwen":
|
| 135 |
+
vae = AutoencoderKLQwenImage.from_pretrained("Qwen/Qwen-Image", subfolder="vae")
|
| 136 |
+
else:
|
| 137 |
+
if vae_kind == "wan":
|
| 138 |
+
vae = AutoencoderKLWan.from_pretrained(project)
|
| 139 |
+
else:
|
| 140 |
+
# старое поведение (пример)
|
| 141 |
+
if model_resolution==high_resolution:
|
| 142 |
+
vae = AutoencoderKL.from_pretrained(project)
|
| 143 |
+
else:
|
| 144 |
+
vae = AsymmetricAutoencoderKL.from_pretrained(project)
|
| 145 |
+
|
| 146 |
+
vae = vae.to(dtype)
|
| 147 |
+
|
| 148 |
+
# torch.compile (опционально)
|
| 149 |
+
if hasattr(torch, "compile"):
|
| 150 |
+
try:
|
| 151 |
+
vae = torch.compile(vae)
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print(f"[WARN] torch.compile failed: {e}")
|
| 154 |
+
|
| 155 |
+
# --------------------------- Freeze/Unfreeze ---------------------------
|
| 156 |
+
core = get_core_model(vae)
|
| 157 |
+
|
| 158 |
+
for p in core.parameters():
|
| 159 |
+
p.requires_grad = False
|
| 160 |
+
|
| 161 |
+
unfrozen_param_names = []
|
| 162 |
+
|
| 163 |
+
if full_training and not train_decoder_only:
|
| 164 |
+
for name, p in core.named_parameters():
|
| 165 |
+
p.requires_grad = True
|
| 166 |
+
unfrozen_param_names.append(name)
|
| 167 |
+
loss_ratios["kl"] = float(kl_ratio)
|
| 168 |
+
trainable_module = core
|
| 169 |
+
else:
|
| 170 |
+
# учим только декодер + post_quant_conv на "ядре" модели
|
| 171 |
+
if hasattr(core, "decoder"):
|
| 172 |
+
for name, p in core.decoder.named_parameters():
|
| 173 |
+
p.requires_grad = True
|
| 174 |
+
unfrozen_param_names.append(f"decoder.{name}")
|
| 175 |
+
if hasattr(core, "post_quant_conv"):
|
| 176 |
+
for name, p in core.post_quant_conv.named_parameters():
|
| 177 |
+
p.requires_grad = True
|
| 178 |
+
unfrozen_param_names.append(f"post_quant_conv.{name}")
|
| 179 |
+
trainable_module = core.decoder if hasattr(core, "decoder") else core
|
| 180 |
+
|
| 181 |
+
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 182 |
+
for nm in unfrozen_param_names[:200]:
|
| 183 |
+
print(" ", nm)
|
| 184 |
+
|
| 185 |
+
# --------------------------- Датасет ---------------------------
|
| 186 |
+
class PngFolderDataset(Dataset):
|
| 187 |
+
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 188 |
+
self.root_dir = root_dir
|
| 189 |
+
self.resolution = resolution
|
| 190 |
+
self.paths = []
|
| 191 |
+
for root, _, files in os.walk(root_dir):
|
| 192 |
+
for fname in files:
|
| 193 |
+
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 194 |
+
self.paths.append(os.path.join(root, fname))
|
| 195 |
+
if limit:
|
| 196 |
+
self.paths = self.paths[:limit]
|
| 197 |
+
valid = []
|
| 198 |
+
for p in self.paths:
|
| 199 |
+
try:
|
| 200 |
+
with Image.open(p) as im:
|
| 201 |
+
im.verify()
|
| 202 |
+
valid.append(p)
|
| 203 |
+
except (OSError, UnidentifiedImageError):
|
| 204 |
+
continue
|
| 205 |
+
self.paths = valid
|
| 206 |
+
if len(self.paths) == 0:
|
| 207 |
+
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 208 |
+
random.shuffle(self.paths)
|
| 209 |
+
|
| 210 |
+
def __len__(self):
|
| 211 |
+
return len(self.paths)
|
| 212 |
+
|
| 213 |
+
def __getitem__(self, idx):
|
| 214 |
+
p = self.paths[idx % len(self.paths)]
|
| 215 |
+
with Image.open(p) as img:
|
| 216 |
+
img = img.convert("RGB")
|
| 217 |
+
if not resize_long_side or resize_long_side <= 0:
|
| 218 |
+
return img
|
| 219 |
+
w, h = img.size
|
| 220 |
+
long = max(w, h)
|
| 221 |
+
if long <= resize_long_side:
|
| 222 |
+
return img
|
| 223 |
+
scale = resize_long_side / float(long)
|
| 224 |
+
new_w = int(round(w * scale))
|
| 225 |
+
new_h = int(round(h * scale))
|
| 226 |
+
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 227 |
+
|
| 228 |
+
def random_crop(img, sz):
|
| 229 |
+
w, h = img.size
|
| 230 |
+
if w < sz or h < sz:
|
| 231 |
+
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 232 |
+
x = random.randint(0, max(1, img.width - sz))
|
| 233 |
+
y = random.randint(0, max(1, img.height - sz))
|
| 234 |
+
return img.crop((x, y, x + sz, y + sz))
|
| 235 |
+
|
| 236 |
+
tfm = transforms.Compose([
|
| 237 |
+
transforms.ToTensor(),
|
| 238 |
+
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 239 |
+
])
|
| 240 |
+
|
| 241 |
+
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 242 |
+
if len(dataset) < batch_size:
|
| 243 |
+
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 244 |
+
|
| 245 |
+
def collate_fn(batch):
|
| 246 |
+
imgs = []
|
| 247 |
+
for img in batch:
|
| 248 |
+
img = random_crop(img, high_resolution)
|
| 249 |
+
imgs.append(tfm(img))
|
| 250 |
+
return torch.stack(imgs)
|
| 251 |
+
|
| 252 |
+
dataloader = DataLoader(
|
| 253 |
+
dataset,
|
| 254 |
+
batch_size=batch_size,
|
| 255 |
+
shuffle=True,
|
| 256 |
+
collate_fn=collate_fn,
|
| 257 |
+
num_workers=num_workers,
|
| 258 |
+
pin_memory=True,
|
| 259 |
+
drop_last=True
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# --------------------------- Оптимизатор ---------------------------
|
| 263 |
+
def get_param_groups(module, weight_decay=0.001):
|
| 264 |
+
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 265 |
+
decay_params, no_decay_params = [], []
|
| 266 |
+
for n, p in vae.named_parameters(): # глобально по vae, с фильтром requires_grad
|
| 267 |
+
if not p.requires_grad:
|
| 268 |
+
continue
|
| 269 |
+
if any(nd in n for nd in no_decay):
|
| 270 |
+
no_decay_params.append(p)
|
| 271 |
+
else:
|
| 272 |
+
decay_params.append(p)
|
| 273 |
+
return [
|
| 274 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
| 275 |
+
{"params": no_decay_params, "weight_decay": 0.0},
|
| 276 |
+
]
|
| 277 |
+
|
| 278 |
+
def get_param_groups(module, weight_decay=0.001):
|
| 279 |
+
no_decay_tokens = ("bias", "norm", "rms", "layernorm")
|
| 280 |
+
decay_params, no_decay_params = [], []
|
| 281 |
+
for n, p in module.named_parameters():
|
| 282 |
+
if not p.requires_grad:
|
| 283 |
+
continue
|
| 284 |
+
n_l = n.lower()
|
| 285 |
+
if any(t in n_l for t in no_decay_tokens):
|
| 286 |
+
no_decay_params.append(p)
|
| 287 |
+
else:
|
| 288 |
+
decay_params.append(p)
|
| 289 |
+
return [
|
| 290 |
+
{"params": decay_params, "weight_decay": weight_decay},
|
| 291 |
+
{"params": no_decay_params, "weight_decay": 0.0},
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
def create_optimizer(name, param_groups):
|
| 295 |
+
if name == "adam8bit":
|
| 296 |
+
return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
|
| 297 |
+
raise ValueError(name)
|
| 298 |
+
|
| 299 |
+
param_groups = get_param_groups(get_core_model(vae), weight_decay=0.001)
|
| 300 |
+
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 301 |
+
|
| 302 |
+
# --------------------------- LR schedule ---------------------------
|
| 303 |
+
batches_per_epoch = len(dataloader)
|
| 304 |
+
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
|
| 305 |
+
total_steps = steps_per_epoch * num_epochs
|
| 306 |
+
|
| 307 |
+
def lr_lambda(step):
|
| 308 |
+
if not use_decay:
|
| 309 |
+
return 1.0
|
| 310 |
+
x = float(step) / float(max(1, total_steps))
|
| 311 |
+
warmup = float(warmup_percent)
|
| 312 |
+
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 313 |
+
if x < warmup:
|
| 314 |
+
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 315 |
+
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 316 |
+
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 317 |
+
|
| 318 |
+
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 319 |
+
|
| 320 |
+
# Подготовка
|
| 321 |
+
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 322 |
+
trainable_params = [p for p in vae.parameters() if p.requires_grad]
|
| 323 |
+
|
| 324 |
+
# --------------------------- LPIPS и вспомогательные ---------------------------
|
| 325 |
+
_lpips_net = None
|
| 326 |
+
def _get_lpips():
|
| 327 |
+
global _lpips_net
|
| 328 |
+
if _lpips_net is None:
|
| 329 |
+
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 330 |
+
return _lpips_net
|
| 331 |
+
|
| 332 |
+
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 333 |
+
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 334 |
+
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 335 |
+
C = x.shape[1]
|
| 336 |
+
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 337 |
+
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 338 |
+
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 339 |
+
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 340 |
+
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 341 |
+
|
| 342 |
+
class MedianLossNormalizer:
|
| 343 |
+
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 344 |
+
s = sum(desired_ratios.values())
|
| 345 |
+
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
|
| 346 |
+
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 347 |
+
self.window = window_steps
|
| 348 |
+
|
| 349 |
+
def update_and_total(self, abs_losses: dict):
|
| 350 |
+
for k, v in abs_losses.items():
|
| 351 |
+
if k in self.buffers:
|
| 352 |
+
self.buffers[k].append(float(v.detach().abs().cpu()))
|
| 353 |
+
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 354 |
+
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 355 |
+
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
|
| 356 |
+
return total, coeffs, meds
|
| 357 |
+
|
| 358 |
+
if full_training and not train_decoder_only:
|
| 359 |
+
loss_ratios["kl"] = float(kl_ratio)
|
| 360 |
+
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 361 |
+
|
| 362 |
+
# --------------------------- Сэмплы ---------------------------
|
| 363 |
+
@torch.no_grad()
|
| 364 |
+
def get_fixed_samples(n=3):
|
| 365 |
+
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 366 |
+
pil_imgs = [dataset[i] for i in idx]
|
| 367 |
+
tensors = []
|
| 368 |
+
for img in pil_imgs:
|
| 369 |
+
img = random_crop(img, high_resolution)
|
| 370 |
+
tensors.append(tfm(img))
|
| 371 |
+
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 372 |
+
|
| 373 |
+
fixed_samples = get_fixed_samples()
|
| 374 |
+
|
| 375 |
+
@torch.no_grad()
|
| 376 |
+
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 377 |
+
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 378 |
+
return Image.fromarray(arr)
|
| 379 |
+
|
| 380 |
+
@torch.no_grad()
|
| 381 |
+
def generate_and_save_samples(step=None):
|
| 382 |
+
try:
|
| 383 |
+
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 384 |
+
lpips_net = _get_lpips()
|
| 385 |
+
with torch.no_grad():
|
| 386 |
+
orig_high = fixed_samples
|
| 387 |
+
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 388 |
+
model_dtype = next(temp_vae.parameters()).dtype
|
| 389 |
+
orig_low = orig_low.to(dtype=model_dtype)
|
| 390 |
+
|
| 391 |
+
# QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
|
| 392 |
+
if is_video_vae(temp_vae):
|
| 393 |
+
x_in = orig_low.unsqueeze(2) # [B,3,1,H,W]
|
| 394 |
+
enc = temp_vae.encode(x_in)
|
| 395 |
+
latents_mean = enc.latent_dist.mean
|
| 396 |
+
dec = temp_vae.decode(latents_mean).sample # [B,3,1,H,W]
|
| 397 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
| 398 |
+
else:
|
| 399 |
+
enc = temp_vae.encode(orig_low)
|
| 400 |
+
latents_mean = enc.latent_dist.mean
|
| 401 |
+
rec = temp_vae.decode(latents_mean).sample
|
| 402 |
+
|
| 403 |
+
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 404 |
+
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 405 |
+
|
| 406 |
+
first_real = _to_pil_uint8(orig_high[0])
|
| 407 |
+
first_dec = _to_pil_uint8(rec[0])
|
| 408 |
+
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 409 |
+
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 410 |
+
|
| 411 |
+
for i in range(rec.shape[0]):
|
| 412 |
+
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 413 |
+
|
| 414 |
+
lpips_scores = []
|
| 415 |
+
for i in range(rec.shape[0]):
|
| 416 |
+
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 417 |
+
rec_full = rec[i:i+1].to(torch.float32)
|
| 418 |
+
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 419 |
+
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 420 |
+
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 421 |
+
lpips_scores.append(lpips_val)
|
| 422 |
+
avg_lpips = float(np.mean(lpips_scores))
|
| 423 |
+
|
| 424 |
+
if use_wandb and accelerator.is_main_process:
|
| 425 |
+
wandb.log({"lpips_mean": avg_lpips}, step=step)
|
| 426 |
+
wandb.log({
|
| 427 |
+
"sample/real": wandb.Image(first_real, caption="real"),
|
| 428 |
+
"sample/decoded": wandb.Image(first_dec, caption="decoded"),
|
| 429 |
+
}, step=step)
|
| 430 |
+
finally:
|
| 431 |
+
gc.collect()
|
| 432 |
+
torch.cuda.empty_cache()
|
| 433 |
+
|
| 434 |
+
if accelerator.is_main_process and save_model:
|
| 435 |
+
print("Генерация сэмплов до старта обучения...")
|
| 436 |
+
generate_and_save_samples(0)
|
| 437 |
+
|
| 438 |
+
accelerator.wait_for_everyone()
|
| 439 |
+
|
| 440 |
+
# --------------------------- Тренировка ---------------------------
|
| 441 |
+
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 442 |
+
global_step = 0
|
| 443 |
+
min_loss = float("inf")
|
| 444 |
+
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 445 |
+
|
| 446 |
+
for epoch in range(num_epochs):
|
| 447 |
+
vae.train()
|
| 448 |
+
batch_losses, batch_grads = [], []
|
| 449 |
+
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 450 |
+
|
| 451 |
+
for imgs in dataloader:
|
| 452 |
+
with accelerator.accumulate(vae):
|
| 453 |
+
imgs = imgs.to(accelerator.device)
|
| 454 |
+
|
| 455 |
+
if high_resolution != model_resolution:
|
| 456 |
+
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 457 |
+
else:
|
| 458 |
+
imgs_low = imgs
|
| 459 |
+
|
| 460 |
+
model_dtype = next(vae.parameters()).dtype
|
| 461 |
+
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
|
| 462 |
+
|
| 463 |
+
# QWEN: encode/decode с T=1
|
| 464 |
+
if is_video_vae(vae):
|
| 465 |
+
x_in = imgs_low_model.unsqueeze(2) # [B,3,1,H,W]
|
| 466 |
+
enc = vae.encode(x_in)
|
| 467 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 468 |
+
dec = vae.decode(latents).sample # [B,3,1,H,W]
|
| 469 |
+
rec = dec.squeeze(2) # [B,3,H,W]
|
| 470 |
+
else:
|
| 471 |
+
enc = vae.encode(imgs_low_model)
|
| 472 |
+
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 473 |
+
rec = vae.decode(latents).sample
|
| 474 |
+
|
| 475 |
+
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 476 |
+
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 477 |
+
|
| 478 |
+
rec_f32 = rec.to(torch.float32)
|
| 479 |
+
imgs_f32 = imgs.to(torch.float32)
|
| 480 |
+
|
| 481 |
+
abs_losses = {
|
| 482 |
+
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 483 |
+
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 484 |
+
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 485 |
+
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 486 |
+
}
|
| 487 |
+
|
| 488 |
+
if full_training and not train_decoder_only:
|
| 489 |
+
mean = enc.latent_dist.mean
|
| 490 |
+
logvar = enc.latent_dist.logvar
|
| 491 |
+
kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
| 492 |
+
abs_losses["kl"] = kl
|
| 493 |
+
else:
|
| 494 |
+
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
|
| 495 |
+
|
| 496 |
+
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 497 |
+
|
| 498 |
+
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 499 |
+
raise RuntimeError("NaN/Inf loss")
|
| 500 |
+
|
| 501 |
+
accelerator.backward(total_loss)
|
| 502 |
+
|
| 503 |
+
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 504 |
+
if accelerator.sync_gradients:
|
| 505 |
+
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 506 |
+
optimizer.step()
|
| 507 |
+
scheduler.step()
|
| 508 |
+
optimizer.zero_grad(set_to_none=True)
|
| 509 |
+
global_step += 1
|
| 510 |
+
progress.update(1)
|
| 511 |
+
|
| 512 |
+
if accelerator.is_main_process:
|
| 513 |
+
try:
|
| 514 |
+
current_lr = optimizer.param_groups[0]["lr"]
|
| 515 |
+
except Exception:
|
| 516 |
+
current_lr = scheduler.get_last_lr()[0]
|
| 517 |
+
|
| 518 |
+
batch_losses.append(total_loss.detach().item())
|
| 519 |
+
batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
|
| 520 |
+
for k, v in abs_losses.items():
|
| 521 |
+
track_losses[k].append(float(v.detach().item()))
|
| 522 |
+
|
| 523 |
+
if use_wandb and accelerator.sync_gradients:
|
| 524 |
+
log_dict = {
|
| 525 |
+
"total_loss": float(total_loss.detach().item()),
|
| 526 |
+
"learning_rate": current_lr,
|
| 527 |
+
"epoch": epoch,
|
| 528 |
+
"grad_norm": batch_grads[-1],
|
| 529 |
+
}
|
| 530 |
+
for k, v in abs_losses.items():
|
| 531 |
+
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 532 |
+
for k in coeffs:
|
| 533 |
+
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 534 |
+
log_dict[f"median_{k}"] = float(meds[k])
|
| 535 |
+
wandb.log(log_dict, step=global_step)
|
| 536 |
+
|
| 537 |
+
if global_step > 0 and global_step % sample_interval == 0:
|
| 538 |
+
if accelerator.is_main_process:
|
| 539 |
+
generate_and_save_samples(global_step)
|
| 540 |
+
accelerator.wait_for_everyone()
|
| 541 |
+
|
| 542 |
+
n_micro = sample_interval * gradient_accumulation_steps
|
| 543 |
+
avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 544 |
+
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 545 |
+
|
| 546 |
+
if accelerator.is_main_process:
|
| 547 |
+
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 548 |
+
if save_model and avg_loss < min_loss * save_barrier:
|
| 549 |
+
min_loss = avg_loss
|
| 550 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 551 |
+
if use_wandb:
|
| 552 |
+
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 553 |
+
|
| 554 |
+
if accelerator.is_main_process:
|
| 555 |
+
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 556 |
+
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 557 |
+
if use_wandb:
|
| 558 |
+
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 559 |
+
|
| 560 |
+
# --------------------------- Финальное сохранение ---------------------------
|
| 561 |
+
if accelerator.is_main_process:
|
| 562 |
+
print("Training finished – saving final model")
|
| 563 |
+
if save_model:
|
| 564 |
+
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 565 |
+
|
| 566 |
+
accelerator.free_memory()
|
| 567 |
+
if torch.distributed.is_initialized():
|
| 568 |
+
torch.distributed.destroy_process_group()
|
| 569 |
+
print("Готово!")
|
transfer_simplevae.ipynb
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "c15deb04-94a0-4073-a174-adcd22af10b8",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [
|
| 9 |
+
{
|
| 10 |
+
"name": "stdout",
|
| 11 |
+
"output_type": "stream",
|
| 12 |
+
"text": [
|
| 13 |
+
"✅ Создана новая модель: <class 'diffusers.models.autoencoders.autoencoder_asym_kl.AsymmetricAutoencoderKL'>\n"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"name": "stderr",
|
| 18 |
+
"output_type": "stream",
|
| 19 |
+
"text": [
|
| 20 |
+
"The config attributes {'block_out_channels': [128, 256, 512, 512, 512], 'force_upcast': False} were passed to AsymmetricAutoencoderKL, but are not expected and will be ignored. Please verify your config.json configuration file.\n"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"name": "stdout",
|
| 25 |
+
"output_type": "stream",
|
| 26 |
+
"text": [
|
| 27 |
+
"\n",
|
| 28 |
+
"--- Перенос весов ---\n"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"name": "stderr",
|
| 33 |
+
"output_type": "stream",
|
| 34 |
+
"text": [
|
| 35 |
+
"100%|██████████| 248/248 [00:00<00:00, 142199.23it/s]\n"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"name": "stdout",
|
| 40 |
+
"output_type": "stream",
|
| 41 |
+
"text": [
|
| 42 |
+
"\n",
|
| 43 |
+
"✅ Перенос завершён.\n",
|
| 44 |
+
"Статистика:\n",
|
| 45 |
+
" перенесено: 142\n",
|
| 46 |
+
" дублировано: 26\n",
|
| 47 |
+
" сдвинуто: 106\n",
|
| 48 |
+
" пропущено: 0\n",
|
| 49 |
+
"\n",
|
| 50 |
+
"Неперенесённые ключи (первые 20):\n",
|
| 51 |
+
" decoder.condition_encoder.layers.0.weight\n",
|
| 52 |
+
" decoder.condition_encoder.layers.0.bias\n",
|
| 53 |
+
" decoder.condition_encoder.layers.1.weight\n",
|
| 54 |
+
" decoder.condition_encoder.layers.1.bias\n",
|
| 55 |
+
" decoder.condition_encoder.layers.2.weight\n",
|
| 56 |
+
" decoder.condition_encoder.layers.2.bias\n",
|
| 57 |
+
" decoder.condition_encoder.layers.3.weight\n",
|
| 58 |
+
" decoder.condition_encoder.layers.3.bias\n",
|
| 59 |
+
" decoder.condition_encoder.layers.4.weight\n",
|
| 60 |
+
" decoder.condition_encoder.layers.4.bias\n"
|
| 61 |
+
]
|
| 62 |
+
}
|
| 63 |
+
],
|
| 64 |
+
"source": [
|
| 65 |
+
"from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL\n",
|
| 66 |
+
"import torch\n",
|
| 67 |
+
"from tqdm import tqdm\n",
|
| 68 |
+
"\n",
|
| 69 |
+
"# ---- Конфиг новой модели ----\n",
|
| 70 |
+
"config = {\n",
|
| 71 |
+
" \"_class_name\": \"AsymmetricAutoencoderKL\",\n",
|
| 72 |
+
" \"act_fn\": \"silu\",\n",
|
| 73 |
+
" \"in_channels\": 3,\n",
|
| 74 |
+
" \"out_channels\": 3,\n",
|
| 75 |
+
" \"scaling_factor\": 1.0,\n",
|
| 76 |
+
" \"norm_num_groups\": 32,\n",
|
| 77 |
+
" \"down_block_out_channels\": [128, 256, 512, 512],\n",
|
| 78 |
+
" \"down_block_types\": [\n",
|
| 79 |
+
" \"DownEncoderBlock2D\",\n",
|
| 80 |
+
" \"DownEncoderBlock2D\",\n",
|
| 81 |
+
" \"DownEncoderBlock2D\",\n",
|
| 82 |
+
" \"DownEncoderBlock2D\",\n",
|
| 83 |
+
" ],\n",
|
| 84 |
+
" \"latent_channels\": 16,\n",
|
| 85 |
+
" \"up_block_out_channels\": [128, 256, 512, 512, 512], # +1 блок\n",
|
| 86 |
+
" \"up_block_types\": [\n",
|
| 87 |
+
" \"UpDecoderBlock2D\",\n",
|
| 88 |
+
" \"UpDecoderBlock2D\",\n",
|
| 89 |
+
" \"UpDecoderBlock2D\",\n",
|
| 90 |
+
" \"UpDecoderBlock2D\",\n",
|
| 91 |
+
" \"UpDecoderBlock2D\",\n",
|
| 92 |
+
" ],\n",
|
| 93 |
+
"}\n",
|
| 94 |
+
"\n",
|
| 95 |
+
"# ---- Создание пустой асимметричной модели ----\n",
|
| 96 |
+
"vae = AsymmetricAutoencoderKL(\n",
|
| 97 |
+
" act_fn=config[\"act_fn\"],\n",
|
| 98 |
+
" down_block_out_channels=config[\"down_block_out_channels\"],\n",
|
| 99 |
+
" down_block_types=config[\"down_block_types\"],\n",
|
| 100 |
+
" latent_channels=config[\"latent_channels\"],\n",
|
| 101 |
+
" up_block_out_channels=config[\"up_block_out_channels\"],\n",
|
| 102 |
+
" up_block_types=config[\"up_block_types\"],\n",
|
| 103 |
+
" in_channels=config[\"in_channels\"],\n",
|
| 104 |
+
" out_channels=config[\"out_channels\"],\n",
|
| 105 |
+
" scaling_factor=config[\"scaling_factor\"],\n",
|
| 106 |
+
" norm_num_groups=config[\"norm_num_groups\"],\n",
|
| 107 |
+
" layers_per_down_block=2,\n",
|
| 108 |
+
" layers_per_up_block = 2,\n",
|
| 109 |
+
" sample_size = 1024\n",
|
| 110 |
+
")\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"vae.save_pretrained(\"asymmetric_vae_empty\")\n",
|
| 113 |
+
"print(\"✅ Создана новая модель:\", type(vae))\n",
|
| 114 |
+
"\n",
|
| 115 |
+
"# ---- Функция переноса весов ----\n",
|
| 116 |
+
"def transfer_weights_with_duplication(old_path, new_path, save_path=\"asymmetric_vae\", device=\"cuda\", dtype=torch.float16):\n",
|
| 117 |
+
" old_vae = AutoencoderKL.from_pretrained(old_path,subfolder=\"vae\").to(device, dtype=dtype)\n",
|
| 118 |
+
" new_vae = AsymmetricAutoencoderKL.from_pretrained(new_path).to(device, dtype=dtype)\n",
|
| 119 |
+
"\n",
|
| 120 |
+
" old_sd = old_vae.state_dict()\n",
|
| 121 |
+
" new_sd = new_vae.state_dict()\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" transferred_keys = set()\n",
|
| 124 |
+
" transfer_stats = {\"перенесено\": 0, \"дублировано\": 0, \"сдвинуто\": 0, \"пропущено\": 0}\n",
|
| 125 |
+
"\n",
|
| 126 |
+
" print(\"\\n--- Перенос весов ---\")\n",
|
| 127 |
+
"\n",
|
| 128 |
+
" for k, v in tqdm(old_sd.items()):\n",
|
| 129 |
+
" # === Копирование энкодера ===\n",
|
| 130 |
+
" if \"encoder\" in k or \"quant_conv\" in k or \"post_quant_conv\" in k:\n",
|
| 131 |
+
" if k in new_sd and new_sd[k].shape == v.shape:\n",
|
| 132 |
+
" new_sd[k] = v.clone()\n",
|
| 133 |
+
" transferred_keys.add(k)\n",
|
| 134 |
+
" transfer_stats[\"перенесено\"] += 1\n",
|
| 135 |
+
" continue\n",
|
| 136 |
+
"\n",
|
| 137 |
+
" # === Перенос декодера ===\n",
|
| 138 |
+
" if \"decoder.up_blocks\" in k:\n",
|
| 139 |
+
" parts = k.split(\".\")\n",
|
| 140 |
+
" idx = int(parts[2])\n",
|
| 141 |
+
"\n",
|
| 142 |
+
" # сдвигаем индекс на +1 (так как добавлен новый блок в начало)\n",
|
| 143 |
+
" new_idx = idx + 1\n",
|
| 144 |
+
" new_k = \".\".join([parts[0], parts[1], str(new_idx)] + parts[3:])\n",
|
| 145 |
+
" if new_k in new_sd and new_sd[new_k].shape == v.shape:\n",
|
| 146 |
+
" new_sd[new_k] = v.clone()\n",
|
| 147 |
+
" transferred_keys.add(new_k)\n",
|
| 148 |
+
" transfer_stats[\"сдвинуто\"] += 1\n",
|
| 149 |
+
" continue\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" # === Перенос прочих совпадающих ключей ===\n",
|
| 152 |
+
" if k in new_sd and new_sd[k].shape == v.shape:\n",
|
| 153 |
+
" new_sd[k] = v.clone()\n",
|
| 154 |
+
" transferred_keys.add(k)\n",
|
| 155 |
+
" transfer_stats[\"перенесено\"] += 1\n",
|
| 156 |
+
"\n",
|
| 157 |
+
" # === Дублирование весов старого 512→512 блока в новый ===\n",
|
| 158 |
+
" ref_prefix = \"decoder.up_blocks.1\" # старый первый up-блок (512→512)\n",
|
| 159 |
+
" new_prefix = \"decoder.up_blocks.0\" # новый добавленный блок\n",
|
| 160 |
+
" for k, v in old_sd.items():\n",
|
| 161 |
+
" if k.startswith(ref_prefix):\n",
|
| 162 |
+
" new_k = k.replace(ref_prefix, new_prefix)\n",
|
| 163 |
+
" if new_k in new_sd and new_sd[new_k].shape == v.shape:\n",
|
| 164 |
+
" new_sd[new_k] = v.clone()\n",
|
| 165 |
+
" transferred_keys.add(new_k)\n",
|
| 166 |
+
" transfer_stats[\"дублировано\"] += 1\n",
|
| 167 |
+
"\n",
|
| 168 |
+
" # === Загрузка и сохранение ===\n",
|
| 169 |
+
" new_vae.load_state_dict(new_sd, strict=False)\n",
|
| 170 |
+
" new_vae.save_pretrained(save_path)\n",
|
| 171 |
+
"\n",
|
| 172 |
+
" print(\"\\n✅ Перенос завершён.\")\n",
|
| 173 |
+
" print(\"Статистика:\")\n",
|
| 174 |
+
" for k, v in transfer_stats.items():\n",
|
| 175 |
+
" print(f\" {k}: {v}\")\n",
|
| 176 |
+
"\n",
|
| 177 |
+
" missing = [k for k in new_sd.keys() if k not in transferred_keys]\n",
|
| 178 |
+
" if missing:\n",
|
| 179 |
+
" print(\"\\nНеперенесённые ключи (первые 20):\")\n",
|
| 180 |
+
" for k in missing[:20]:\n",
|
| 181 |
+
" print(\" \", k)\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"# ---- Запуск ----\n",
|
| 184 |
+
"transfer_weights_with_duplication(\"AiArtLab/simplevae\", \"asymmetric_vae_empty\", save_path=\"vae\")\n"
|
| 185 |
+
]
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"cell_type": "code",
|
| 189 |
+
"execution_count": 8,
|
| 190 |
+
"id": "65653a65-e7c2-4b67-bc17-62c21cfd1db8",
|
| 191 |
+
"metadata": {},
|
| 192 |
+
"outputs": [
|
| 193 |
+
{
|
| 194 |
+
"name": "stdout",
|
| 195 |
+
"output_type": "stream",
|
| 196 |
+
"text": [
|
| 197 |
+
"Collecting hf_transfer\n",
|
| 198 |
+
" Downloading hf_transfer-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.7 kB)\n",
|
| 199 |
+
"Downloading hf_transfer-0.1.9-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
|
| 200 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m34.5 MB/s\u001b[0m \u001b[33m0:00:00\u001b[0m\n",
|
| 201 |
+
"\u001b[?25hInstalling collected packages: hf_transfer\n",
|
| 202 |
+
"Successfully installed hf_transfer-0.1.9\n"
|
| 203 |
+
]
|
| 204 |
+
}
|
| 205 |
+
],
|
| 206 |
+
"source": [
|
| 207 |
+
"!pip install hf_transfer"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "code",
|
| 212 |
+
"execution_count": null,
|
| 213 |
+
"id": "59fcafb9-6d89-49b4-8362-b4891f591687",
|
| 214 |
+
"metadata": {},
|
| 215 |
+
"outputs": [],
|
| 216 |
+
"source": []
|
| 217 |
+
}
|
| 218 |
+
],
|
| 219 |
+
"metadata": {
|
| 220 |
+
"kernelspec": {
|
| 221 |
+
"display_name": "Python 3 (ipykernel)",
|
| 222 |
+
"language": "python",
|
| 223 |
+
"name": "python3"
|
| 224 |
+
},
|
| 225 |
+
"language_info": {
|
| 226 |
+
"codemirror_mode": {
|
| 227 |
+
"name": "ipython",
|
| 228 |
+
"version": 3
|
| 229 |
+
},
|
| 230 |
+
"file_extension": ".py",
|
| 231 |
+
"mimetype": "text/x-python",
|
| 232 |
+
"name": "python",
|
| 233 |
+
"nbconvert_exporter": "python",
|
| 234 |
+
"pygments_lexer": "ipython3",
|
| 235 |
+
"version": "3.12.3"
|
| 236 |
+
}
|
| 237 |
+
},
|
| 238 |
+
"nbformat": 4,
|
| 239 |
+
"nbformat_minor": 5
|
| 240 |
+
}
|
untitled.txt
ADDED
|
File without changes
|
vae/config.json
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AsymmetricAutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.35.1",
|
| 4 |
+
"_name_or_path": "vae",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512,
|
| 11 |
+
512
|
| 12 |
+
],
|
| 13 |
+
"down_block_out_channels": [
|
| 14 |
+
128,
|
| 15 |
+
256,
|
| 16 |
+
512,
|
| 17 |
+
512
|
| 18 |
+
],
|
| 19 |
+
"down_block_types": [
|
| 20 |
+
"DownEncoderBlock2D",
|
| 21 |
+
"DownEncoderBlock2D",
|
| 22 |
+
"DownEncoderBlock2D",
|
| 23 |
+
"DownEncoderBlock2D"
|
| 24 |
+
],
|
| 25 |
+
"force_upcast": false,
|
| 26 |
+
"in_channels": 3,
|
| 27 |
+
"latent_channels": 16,
|
| 28 |
+
"layers_per_down_block": 2,
|
| 29 |
+
"layers_per_up_block": 2,
|
| 30 |
+
"norm_num_groups": 32,
|
| 31 |
+
"out_channels": 3,
|
| 32 |
+
"sample_size": 1024,
|
| 33 |
+
"scaling_factor": 1.0,
|
| 34 |
+
"up_block_out_channels": [
|
| 35 |
+
128,
|
| 36 |
+
256,
|
| 37 |
+
512,
|
| 38 |
+
512,
|
| 39 |
+
512
|
| 40 |
+
],
|
| 41 |
+
"up_block_types": [
|
| 42 |
+
"UpDecoderBlock2D",
|
| 43 |
+
"UpDecoderBlock2D",
|
| 44 |
+
"UpDecoderBlock2D",
|
| 45 |
+
"UpDecoderBlock2D",
|
| 46 |
+
"UpDecoderBlock2D"
|
| 47 |
+
]
|
| 48 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8aef462535483be8d283418a62726921310dd8adcd60ee8418ebea5836316627
|
| 3 |
+
size 444559412
|