recoilme commited on
Commit
3d54a9f
·
verified ·
1 Parent(s): c3a7b2d

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Untitled.ipynb +178 -0
  2. model_index.json +2 -1
  3. pipeline_waifu.py +284 -0
Untitled.ipynb ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 12,
6
+ "id": "dca3239c-17d6-4284-a2cf-83237a55a7df",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "data": {
11
+ "application/vnd.jupyter.widget-view+json": {
12
+ "model_id": "b221b6b9b9864425b10749ac984d5835",
13
+ "version_major": 2,
14
+ "version_minor": 0
15
+ },
16
+ "text/plain": [
17
+ "model_index.json: 0%| | 0.00/414 [00:00<?, ?B/s]"
18
+ ]
19
+ },
20
+ "metadata": {},
21
+ "output_type": "display_data"
22
+ },
23
+ {
24
+ "data": {
25
+ "application/vnd.jupyter.widget-view+json": {
26
+ "model_id": "07b4b0a81f9845afb279935eabfd0777",
27
+ "version_major": 2,
28
+ "version_minor": 0
29
+ },
30
+ "text/plain": [
31
+ "Fetching 11 files: 0%| | 0/11 [00:00<?, ?it/s]"
32
+ ]
33
+ },
34
+ "metadata": {},
35
+ "output_type": "display_data"
36
+ },
37
+ {
38
+ "data": {
39
+ "application/vnd.jupyter.widget-view+json": {
40
+ "model_id": "949f157d97d84f1281e3bac2d409f6c8",
41
+ "version_major": 2,
42
+ "version_minor": 0
43
+ },
44
+ "text/plain": [
45
+ "text_encoder/config.json: 0%| | 0.00/703 [00:00<?, ?B/s]"
46
+ ]
47
+ },
48
+ "metadata": {},
49
+ "output_type": "display_data"
50
+ },
51
+ {
52
+ "data": {
53
+ "application/vnd.jupyter.widget-view+json": {
54
+ "model_id": "581b49cdca934d7cafb351a39b035318",
55
+ "version_major": 2,
56
+ "version_minor": 0
57
+ },
58
+ "text/plain": [
59
+ "model.fp16.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]"
60
+ ]
61
+ },
62
+ "metadata": {},
63
+ "output_type": "display_data"
64
+ },
65
+ {
66
+ "data": {
67
+ "application/vnd.jupyter.widget-view+json": {
68
+ "model_id": "54cd4a2171c14f52bf196476baad63b5",
69
+ "version_major": 2,
70
+ "version_minor": 0
71
+ },
72
+ "text/plain": [
73
+ "diffusion_pytorch_model.fp16.safetensors: 0%| | 0.00/3.20G [00:00<?, ?B/s]"
74
+ ]
75
+ },
76
+ "metadata": {},
77
+ "output_type": "display_data"
78
+ },
79
+ {
80
+ "name": "stderr",
81
+ "output_type": "stream",
82
+ "text": [
83
+ "Keyword arguments {'trust_remote_code': True} are not expected by SanaPipeline and will be ignored.\n"
84
+ ]
85
+ },
86
+ {
87
+ "data": {
88
+ "application/vnd.jupyter.widget-view+json": {
89
+ "model_id": "e13097eff89242839a05b60123f73ca3",
90
+ "version_major": 2,
91
+ "version_minor": 0
92
+ },
93
+ "text/plain": [
94
+ "Loading pipeline components...: 0%| | 0/5 [00:00<?, ?it/s]"
95
+ ]
96
+ },
97
+ "metadata": {},
98
+ "output_type": "display_data"
99
+ },
100
+ {
101
+ "name": "stdout",
102
+ "output_type": "stream",
103
+ "text": [
104
+ "SanaPipeline {\n",
105
+ " \"_class_name\": \"SanaPipeline\",\n",
106
+ " \"_diffusers_version\": \"0.32.0.dev0\",\n",
107
+ " \"_name_or_path\": \"AiArtLab/waifu-2b\",\n",
108
+ " \"scheduler\": [\n",
109
+ " \"diffusers\",\n",
110
+ " \"FlowMatchEulerDiscreteScheduler\"\n",
111
+ " ],\n",
112
+ " \"text_encoder\": [\n",
113
+ " \"transformers\",\n",
114
+ " \"XLMRobertaModel\"\n",
115
+ " ],\n",
116
+ " \"tokenizer\": [\n",
117
+ " \"transformers\",\n",
118
+ " \"XLMRobertaTokenizerFast\"\n",
119
+ " ],\n",
120
+ " \"transformer\": [\n",
121
+ " \"diffusers\",\n",
122
+ " \"SanaTransformer2DModel\"\n",
123
+ " ],\n",
124
+ " \"vae\": [\n",
125
+ " \"diffusers\",\n",
126
+ " \"AutoencoderKL\"\n",
127
+ " ]\n",
128
+ "}\n",
129
+ "\n"
130
+ ]
131
+ }
132
+ ],
133
+ "source": [
134
+ "import torch\n",
135
+ "from diffusers import DiffusionPipeline\n",
136
+ "\n",
137
+ "pipe_id = \"AiArtLab/waifu-2b\"\n",
138
+ "variant = \"fp16\"\n",
139
+ "pipe = DiffusionPipeline.from_pretrained(\n",
140
+ " pipe_id, \n",
141
+ " variant=variant,\n",
142
+ " trust_remote_code=True\n",
143
+ ")\n",
144
+ "print(pipe)\n",
145
+ "#pipe_sd.to(\"cuda\")"
146
+ ]
147
+ },
148
+ {
149
+ "cell_type": "code",
150
+ "execution_count": null,
151
+ "id": "b6ebc579-0eb2-4828-89d5-b40f6d5e758e",
152
+ "metadata": {},
153
+ "outputs": [],
154
+ "source": []
155
+ }
156
+ ],
157
+ "metadata": {
158
+ "kernelspec": {
159
+ "display_name": "Python 3 (ipykernel)",
160
+ "language": "python",
161
+ "name": "python3"
162
+ },
163
+ "language_info": {
164
+ "codemirror_mode": {
165
+ "name": "ipython",
166
+ "version": 3
167
+ },
168
+ "file_extension": ".py",
169
+ "mimetype": "text/x-python",
170
+ "name": "python",
171
+ "nbconvert_exporter": "python",
172
+ "pygments_lexer": "ipython3",
173
+ "version": "3.11.6"
174
+ }
175
+ },
176
+ "nbformat": 4,
177
+ "nbformat_minor": 5
178
+ }
model_index.json CHANGED
@@ -1,6 +1,7 @@
1
  {
2
- "_class_name": "SanaPipeline",
3
  "_diffusers_version": "0.32.0.dev0",
 
4
  "scheduler": [
5
  "diffusers",
6
  "FlowMatchEulerDiscreteScheduler"
 
1
  {
2
+ "_class_name": ["pipeline_waifu", "WaifuPipeline"],
3
  "_diffusers_version": "0.32.0.dev0",
4
+ "_name_or_path": "AiArtlab/waifu-2b",
5
  "scheduler": [
6
  "diffusers",
7
  "FlowMatchEulerDiscreteScheduler"
pipeline_waifu.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ # tokenizer
3
+ from transformers import XLMRobertaTokenizerFast
4
+ # text_encoder
5
+ from transformers import XLMRobertaModel
6
+ # scheduler
7
+ from diffusers import FlowMatchEulerDiscreteScheduler
8
+ # VAE
9
+ from diffusers.models import AutoencoderKL
10
+ # Transformer
11
+ from diffusers import SanaTransformer2DModel
12
+
13
+ class WaifuPipeline(DiffusionPipeline):
14
+ r"""
15
+ Pipeline for text-to-image generation using [waifu](https://github.com/recoilme/waifu).
16
+ """
17
+
18
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
19
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
20
+
21
+ def __init__(
22
+ self,
23
+ tokenizer: XLMRobertaTokenizerFast,
24
+ text_encoder: XLMRobertaModel,
25
+ vae: AutoencoderKL,
26
+ transformer: SanaTransformer2DModel,
27
+ scheduler: FlowMatchEulerDiscreteScheduler,
28
+ ):
29
+ super().__init__()
30
+
31
+ self.register_modules(
32
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
33
+ )
34
+
35
+ self.vae_scale_factor = 8
36
+ self.image_processor = PixArtImageProcessor(vae_scale_factor=self.vae_scale_factor)
37
+
38
+ @torch.no_grad()
39
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
40
+ def __call__(
41
+ self,
42
+ prompt: Union[str, List[str]] = None,
43
+ negative_prompt: str = "",
44
+ num_inference_steps: int = 20,
45
+ timesteps: List[int] = None,
46
+ sigmas: List[float] = None,
47
+ guidance_scale: float = 4.5,
48
+ num_images_per_prompt: Optional[int] = 1,
49
+ height: int = 512,
50
+ width: int = 512,
51
+ eta: float = 0.0,
52
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
53
+ latents: Optional[torch.Tensor] = None,
54
+ prompt_embeds: Optional[torch.Tensor] = None,
55
+ prompt_attention_mask: Optional[torch.Tensor] = None,
56
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
57
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
61
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
62
+ max_sequence_length: int = 512,
63
+ ) -> Union[SanaPipelineOutput, Tuple]:
64
+ """
65
+ Function invoked when calling the pipeline for generation.
66
+
67
+ Args:
68
+ prompt (`str` or `List[str]`, *optional*):
69
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
70
+ instead.
71
+ negative_prompt (`str` or `List[str]`, *optional*):
72
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
73
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
74
+ less than `1`).
75
+ num_inference_steps (`int`, *optional*, defaults to 20):
76
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
77
+ expense of slower inference.
78
+ timesteps (`List[int]`, *optional*):
79
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
80
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
81
+ passed will be used. Must be in descending order.
82
+ sigmas (`List[float]`, *optional*):
83
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
84
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
85
+ will be used.
86
+ guidance_scale (`float`, *optional*, defaults to 4.5):
87
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
88
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
89
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
90
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
91
+ usually at the expense of lower image quality.
92
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
93
+ The number of images to generate per prompt.
94
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
95
+ The height in pixels of the generated image.
96
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
97
+ The width in pixels of the generated image.
98
+ eta (`float`, *optional*, defaults to 0.0):
99
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
100
+ [`schedulers.DDIMScheduler`], will be ignored for others.
101
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
102
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
103
+ to make generation deterministic.
104
+ latents (`torch.Tensor`, *optional*):
105
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
106
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
107
+ tensor will ge generated by sampling using the supplied random `generator`.
108
+ prompt_embeds (`torch.Tensor`, *optional*):
109
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
110
+ provided, text embeddings will be generated from `prompt` input argument.
111
+ prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings.
112
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
113
+ Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
114
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
115
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
116
+ Pre-generated attention mask for negative text embeddings.
117
+ output_type (`str`, *optional*, defaults to `"pil"`):
118
+ The output format of the generate image. Choose between
119
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
120
+ return_dict (`bool`, *optional*, defaults to `True`):
121
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
122
+ callback_on_step_end (`Callable`, *optional*):
123
+ A function that calls at the end of each denoising steps during the inference. The function is called
124
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
125
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
126
+ `callback_on_step_end_tensor_inputs`.
127
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
128
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
129
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
130
+ `._callback_tensor_inputs` attribute of your pipeline class.
131
+ max_sequence_length (`int` defaults to `512`):
132
+ Maximum sequence length to use with the `prompt`.
133
+
134
+ Examples:
135
+
136
+ Returns:
137
+ [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] or `tuple`:
138
+ If `return_dict` is `True`, [`~pipelines.sana.pipeline_output.SanaPipelineOutput`] is returned,
139
+ otherwise a `tuple` is returned where the first element is a list with the generated images
140
+ """
141
+
142
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
143
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
144
+
145
+ # 1. Check inputs. Raise error if not correct
146
+ self.check_inputs(
147
+ prompt,
148
+ height,
149
+ width,
150
+ callback_on_step_end_tensor_inputs,
151
+ negative_prompt,
152
+ prompt_embeds,
153
+ negative_prompt_embeds,
154
+ prompt_attention_mask,
155
+ negative_prompt_attention_mask,
156
+ )
157
+
158
+ self._guidance_scale = guidance_scale
159
+ self._interrupt = False
160
+
161
+ # 2. Default height and width to transformer
162
+ if prompt is not None and isinstance(prompt, str):
163
+ batch_size = 1
164
+ elif prompt is not None and isinstance(prompt, list):
165
+ batch_size = len(prompt)
166
+ else:
167
+ batch_size = prompt_embeds.shape[0]
168
+
169
+ device = self._execution_device
170
+
171
+ # 3. Encode input prompt
172
+ (
173
+ prompt_embeds,
174
+ prompt_attention_mask,
175
+ negative_prompt_embeds,
176
+ negative_prompt_attention_mask,
177
+ ) = self.encode_prompt(
178
+ prompt,
179
+ self.do_classifier_free_guidance,
180
+ negative_prompt=negative_prompt,
181
+ num_images_per_prompt=num_images_per_prompt,
182
+ device=device,
183
+ prompt_embeds=prompt_embeds,
184
+ negative_prompt_embeds=negative_prompt_embeds,
185
+ prompt_attention_mask=prompt_attention_mask,
186
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
187
+ max_sequence_length=max_sequence_length,
188
+ )
189
+ if self.do_classifier_free_guidance:
190
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
191
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
192
+
193
+ # 4. Prepare timesteps
194
+ timesteps, num_inference_steps = retrieve_timesteps(
195
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
196
+ )
197
+
198
+ # 5. Prepare latents.
199
+ latent_channels = self.transformer.config.in_channels
200
+ latents = self.prepare_latents(
201
+ batch_size * num_images_per_prompt,
202
+ latent_channels,
203
+ height,
204
+ width,
205
+ torch.float32,
206
+ device,
207
+ generator,
208
+ latents,
209
+ )
210
+
211
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
212
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
213
+
214
+ # 7. Denoising loop
215
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
216
+ self._num_timesteps = len(timesteps)
217
+
218
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
219
+ for i, t in enumerate(timesteps):
220
+ if self.interrupt:
221
+ continue
222
+
223
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
224
+ latent_model_input = latent_model_input.to(prompt_embeds.dtype)
225
+
226
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
227
+ timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
228
+
229
+ # predict noise model_output
230
+ noise_pred = self.transformer(
231
+ latent_model_input,
232
+ encoder_hidden_states=prompt_embeds,
233
+ encoder_attention_mask=prompt_attention_mask,
234
+ timestep=timestep,
235
+ return_dict=False,
236
+ )[0]
237
+ noise_pred = noise_pred.float()
238
+
239
+ # perform guidance
240
+ if self.do_classifier_free_guidance:
241
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
242
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
243
+
244
+ # learned sigma
245
+ if self.transformer.config.out_channels // 2 == latent_channels:
246
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
247
+ else:
248
+ noise_pred = noise_pred
249
+
250
+ # compute previous image: x_t -> x_t-1
251
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
252
+
253
+ if callback_on_step_end is not None:
254
+ callback_kwargs = {}
255
+ for k in callback_on_step_end_tensor_inputs:
256
+ callback_kwargs[k] = locals()[k]
257
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
258
+
259
+ latents = callback_outputs.pop("latents", latents)
260
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
261
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
262
+
263
+ # call the callback, if provided
264
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
265
+ progress_bar.update()
266
+
267
+ if output_type == "latent":
268
+ image = latents
269
+ else:
270
+ latents = latents.to(self.vae.dtype)
271
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
272
+ if use_resolution_binning:
273
+ image = self.image_processor.resize_and_crop_tensor(image, orig_width, orig_height)
274
+
275
+ if not output_type == "latent":
276
+ image = self.image_processor.postprocess(image, output_type=output_type)
277
+
278
+ # Offload all models
279
+ self.maybe_free_model_hooks()
280
+
281
+ if not return_dict:
282
+ return (image,)
283
+
284
+ return SanaPipelineOutput(images=image)