Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,59 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
library_name: keras
|
| 4 |
---
|
| 5 |
+
# BiLSTM Sentiment Classifier (Teeny-Tiny Castle)
|
| 6 |
+
|
| 7 |
+
This model is part of a tutorial tied to the [Teeny-Tiny Castle](https://github.com/Nkluge-correa/TeenyTinyCastle), an open-source repository containing educational tools for AI Ethics and Safety research.
|
| 8 |
+
|
| 9 |
+
## How to Use
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
+
|
| 14 |
+
# Download the model
|
| 15 |
+
hf_hub_download(repo_id="AiresPucrs/BiLSTM-sentiment-classifier",
|
| 16 |
+
filename="BiLSTM-sentiment-classifier.h5",
|
| 17 |
+
local_dir="./",
|
| 18 |
+
repo_type="model"
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Download the tokenizer file
|
| 22 |
+
hf_hub_download(repo_id="AiresPucrs/BiLSTM-sentiment-classifier",
|
| 23 |
+
filename="tokenizer-BiLSTM-sentiment-classifier.json",
|
| 24 |
+
local_dir="./",
|
| 25 |
+
repo_type="model"
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
import json
|
| 29 |
+
import torch
|
| 30 |
+
import numpy as np
|
| 31 |
+
import pandas as pd
|
| 32 |
+
import tensorflow as tf
|
| 33 |
+
|
| 34 |
+
model = tf.keras.models.load_model('./BiLSTM-sentiment-classifier.h5')
|
| 35 |
+
|
| 36 |
+
with open('./tokenizer-BiLSTM-sentiment-classifier.json') as fp:
|
| 37 |
+
data = json.load(fp)
|
| 38 |
+
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(data)
|
| 39 |
+
fp.close()
|
| 40 |
+
|
| 41 |
+
strings = [
|
| 42 |
+
'this explanation is really bad',
|
| 43 |
+
'i did not like this tutorial 2/10',
|
| 44 |
+
'this tutorial is garbage i wont my money back',
|
| 45 |
+
'is nice to see philosophers doing machine learning',
|
| 46 |
+
'this is a great and wonderful example of nlp',
|
| 47 |
+
'this tutorial is great one of the best tutorials ever made'
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
preds = model.predict(
|
| 51 |
+
tf.keras.preprocessing.sequence.pad_sequences(
|
| 52 |
+
tokenizer.texts_to_sequences(strings),
|
| 53 |
+
maxlen=250,
|
| 54 |
+
truncating='post'
|
| 55 |
+
), verbose=0)
|
| 56 |
+
|
| 57 |
+
for i, string in enumerate(strings):
|
| 58 |
+
print(f'Review: "{string}"\n(Negative 😊 {round((preds[i][0]) * 100)}% | Positive 😔 {round(preds[i][1] * 100)}%)\n')
|
| 59 |
+
```
|