|
import torch |
|
import torchaudio |
|
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq |
|
|
|
class Inference: |
|
def __init__(self): |
|
self.processor = AutoProcessor.from_pretrained(".") |
|
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(".") |
|
self.model.eval() |
|
|
|
def __call__(self, inputs): |
|
audio_path = inputs.get("inputs") |
|
if not audio_path: |
|
return {"error": "No audio provided."} |
|
|
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
if sample_rate != 16000: |
|
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform) |
|
|
|
inputs = self.processor(waveform.squeeze(), sampling_rate=16000, return_tensors="pt") |
|
with torch.no_grad(): |
|
generated_ids = self.model.generate(inputs["input_features"]) |
|
text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return {"text": text} |
|
|