Initial Commit
Browse files- .gitattributes +9 -19
- README.md +225 -0
- classifier.ckpt +3 -0
- embedding_model.ckpt +3 -0
- hyperparams.yaml +52 -0
- label_encoder.txt +109 -0
- normalizer.ckpt +3 -0
.gitattributes
CHANGED
@@ -1,27 +1,17 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.
|
6 |
-
*.
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.
|
20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
1 |
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: multilingual
|
3 |
+
thumbnail:
|
4 |
+
tags:
|
5 |
+
- audio-classification
|
6 |
+
- speechbrain
|
7 |
+
- embeddings
|
8 |
+
- Language
|
9 |
+
- Identification
|
10 |
+
- pytorch
|
11 |
+
- ECAPA-TDNN
|
12 |
+
- TDNN
|
13 |
+
- VoxLingua107
|
14 |
+
license: "apache-2.0"
|
15 |
+
datasets:
|
16 |
+
- VoxLingua107
|
17 |
+
metrics:
|
18 |
+
- Accuracy
|
19 |
+
widget:
|
20 |
+
- label: English Sample
|
21 |
+
src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac
|
22 |
+
---
|
23 |
+
|
24 |
+
# VoxLingua107 ECAPA-TDNN Spoken Language Identification Model
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain.
|
29 |
+
The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition.
|
30 |
+
|
31 |
+
The model can classify a speech utterance according to the language spoken.
|
32 |
+
It covers 107 different languages (
|
33 |
+
Abkhazian,
|
34 |
+
Afrikaans,
|
35 |
+
Amharic,
|
36 |
+
Arabic,
|
37 |
+
Assamese,
|
38 |
+
Azerbaijani,
|
39 |
+
Bashkir,
|
40 |
+
Belarusian,
|
41 |
+
Bulgarian,
|
42 |
+
Bengali,
|
43 |
+
Tibetan,
|
44 |
+
Breton,
|
45 |
+
Bosnian,
|
46 |
+
Catalan,
|
47 |
+
Cebuano,
|
48 |
+
Czech,
|
49 |
+
Welsh,
|
50 |
+
Danish,
|
51 |
+
German,
|
52 |
+
Greek,
|
53 |
+
English,
|
54 |
+
Esperanto,
|
55 |
+
Spanish,
|
56 |
+
Estonian,
|
57 |
+
Basque,
|
58 |
+
Persian,
|
59 |
+
Finnish,
|
60 |
+
Faroese,
|
61 |
+
French,
|
62 |
+
Galician,
|
63 |
+
Guarani,
|
64 |
+
Gujarati,
|
65 |
+
Manx,
|
66 |
+
Hausa,
|
67 |
+
Hawaiian,
|
68 |
+
Hindi,
|
69 |
+
Croatian,
|
70 |
+
Haitian,
|
71 |
+
Hungarian,
|
72 |
+
Armenian,
|
73 |
+
Interlingua,
|
74 |
+
Indonesian,
|
75 |
+
Icelandic,
|
76 |
+
Italian,
|
77 |
+
Hebrew,
|
78 |
+
Japanese,
|
79 |
+
Javanese,
|
80 |
+
Georgian,
|
81 |
+
Kazakh,
|
82 |
+
Central Khmer,
|
83 |
+
Kannada,
|
84 |
+
Korean,
|
85 |
+
Latin,
|
86 |
+
Luxembourgish,
|
87 |
+
Lingala,
|
88 |
+
Lao,
|
89 |
+
Lithuanian,
|
90 |
+
Latvian,
|
91 |
+
Malagasy,
|
92 |
+
Maori,
|
93 |
+
Macedonian,
|
94 |
+
Malayalam,
|
95 |
+
Mongolian,
|
96 |
+
Marathi,
|
97 |
+
Malay,
|
98 |
+
Maltese,
|
99 |
+
Burmese,
|
100 |
+
Nepali,
|
101 |
+
Dutch,
|
102 |
+
Norwegian Nynorsk,
|
103 |
+
Norwegian,
|
104 |
+
Occitan,
|
105 |
+
Panjabi,
|
106 |
+
Polish,
|
107 |
+
Pushto,
|
108 |
+
Portuguese,
|
109 |
+
Romanian,
|
110 |
+
Russian,
|
111 |
+
Sanskrit,
|
112 |
+
Scots,
|
113 |
+
Sindhi,
|
114 |
+
Sinhala,
|
115 |
+
Slovak,
|
116 |
+
Slovenian,
|
117 |
+
Shona,
|
118 |
+
Somali,
|
119 |
+
Albanian,
|
120 |
+
Serbian,
|
121 |
+
Sundanese,
|
122 |
+
Swedish,
|
123 |
+
Swahili,
|
124 |
+
Tamil,
|
125 |
+
Telugu,
|
126 |
+
Tajik,
|
127 |
+
Thai,
|
128 |
+
Turkmen,
|
129 |
+
Tagalog,
|
130 |
+
Turkish,
|
131 |
+
Tatar,
|
132 |
+
Ukrainian,
|
133 |
+
Urdu,
|
134 |
+
Uzbek,
|
135 |
+
Vietnamese,
|
136 |
+
Waray,
|
137 |
+
Yiddish,
|
138 |
+
Yoruba,
|
139 |
+
Mandarin Chinese).
|
140 |
+
|
141 |
+
## Intended uses & limitations
|
142 |
+
|
143 |
+
The model has two uses:
|
144 |
+
|
145 |
+
- use 'as is' for spoken language recognition
|
146 |
+
- use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data
|
147 |
+
|
148 |
+
The model is trained on automatically collected YouTube data. For more
|
149 |
+
information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/).
|
150 |
+
|
151 |
+
|
152 |
+
#### How to use
|
153 |
+
|
154 |
+
```python
|
155 |
+
import torchaudio
|
156 |
+
from speechbrain.pretrained import EncoderClassifier
|
157 |
+
language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn", savedir="tmp")
|
158 |
+
# Download Thai language sample from Omniglot and cvert to suitable form
|
159 |
+
signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3")
|
160 |
+
prediction = language_id.classify_batch(signal)
|
161 |
+
print(prediction)
|
162 |
+
(tensor([[0.3210, 0.3751, 0.3680, 0.3939, 0.4026, 0.3644, 0.3689, 0.3597, 0.3508,
|
163 |
+
0.3666, 0.3895, 0.3978, 0.3848, 0.3957, 0.3949, 0.3586, 0.4360, 0.3997,
|
164 |
+
0.4106, 0.3886, 0.4177, 0.3870, 0.3764, 0.3763, 0.3672, 0.4000, 0.4256,
|
165 |
+
0.4091, 0.3563, 0.3695, 0.3320, 0.3838, 0.3850, 0.3867, 0.3878, 0.3944,
|
166 |
+
0.3924, 0.4063, 0.3803, 0.3830, 0.2996, 0.4187, 0.3976, 0.3651, 0.3950,
|
167 |
+
0.3744, 0.4295, 0.3807, 0.3613, 0.4710, 0.3530, 0.4156, 0.3651, 0.3777,
|
168 |
+
0.3813, 0.6063, 0.3708, 0.3886, 0.3766, 0.4023, 0.3785, 0.3612, 0.4193,
|
169 |
+
0.3720, 0.4406, 0.3243, 0.3866, 0.3866, 0.4104, 0.4294, 0.4175, 0.3364,
|
170 |
+
0.3595, 0.3443, 0.3565, 0.3776, 0.3985, 0.3778, 0.2382, 0.4115, 0.4017,
|
171 |
+
0.4070, 0.3266, 0.3648, 0.3888, 0.3907, 0.3755, 0.3631, 0.4460, 0.3464,
|
172 |
+
0.3898, 0.3661, 0.3883, 0.3772, 0.9289, 0.3687, 0.4298, 0.4211, 0.3838,
|
173 |
+
0.3521, 0.3515, 0.3465, 0.4772, 0.4043, 0.3844, 0.3973, 0.4343]]), tensor([0.9289]), tensor([94]), ['th'])
|
174 |
+
# The scores in the prediction[0] tensor can be interpreted as cosine scores between
|
175 |
+
# the languages and the given utterance (i.e., the larger the better)
|
176 |
+
# The identified language ISO code is given in prediction[3]
|
177 |
+
print(prediction[3])
|
178 |
+
['th']
|
179 |
+
|
180 |
+
# Alternatively, use the utterance embedding extractor:
|
181 |
+
emb = language_id.encode_batch(signal)
|
182 |
+
print(emb.shape)
|
183 |
+
torch.Size([1, 1, 256])
|
184 |
+
```
|
185 |
+
|
186 |
+
#### Limitations and bias
|
187 |
+
|
188 |
+
Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are:
|
189 |
+
|
190 |
+
- Probably it's accuracy on smaller languages is quite limited
|
191 |
+
- Probably it works worse on female speech than male speech (because YouTube data includes much more male speech)
|
192 |
+
- Based on subjective experiments, it doesn't work well on speech with a foreign accent
|
193 |
+
- Probably it doesn't work well on children's speech and on persons with speech disorders
|
194 |
+
|
195 |
+
|
196 |
+
## Training data
|
197 |
+
|
198 |
+
The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/).
|
199 |
+
|
200 |
+
VoxLingua107 is a speech dataset for training spoken language identification models.
|
201 |
+
The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives.
|
202 |
+
|
203 |
+
VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours.
|
204 |
+
The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language.
|
205 |
+
|
206 |
+
## Training procedure
|
207 |
+
|
208 |
+
We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model.
|
209 |
+
Training recipe will be published soon.
|
210 |
+
|
211 |
+
## Evaluation results
|
212 |
+
|
213 |
+
Error rate: 7% on the development dataset
|
214 |
+
|
215 |
+
|
216 |
+
### BibTeX entry and citation info
|
217 |
+
|
218 |
+
```bibtex
|
219 |
+
@inproceedings{valk2021slt,
|
220 |
+
title={{VoxLingua107}: a Dataset for Spoken Language Recognition},
|
221 |
+
author={J{\"o}rgen Valk and Tanel Alum{\"a}e},
|
222 |
+
booktitle={Proc. IEEE SLT Workshop},
|
223 |
+
year={2021},
|
224 |
+
}
|
225 |
+
```
|
classifier.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a70783704ef67dcccd675185f5fb96652b4d0f01b66f67e16281a2c0b1d62bc5
|
3 |
+
size 110456
|
embedding_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e947c296c59f36de13db8b4e5c120dd4d75c2d90e0b6aab3aa86d23c38fc2a8d
|
3 |
+
size 84480206
|
hyperparams.yaml
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_path: TalTechNLP/voxlingua107-epaca-tdnn
|
2 |
+
|
3 |
+
|
4 |
+
# Feature parameters
|
5 |
+
n_mels: 60
|
6 |
+
left_frames: 0
|
7 |
+
right_frames: 0
|
8 |
+
deltas: false
|
9 |
+
|
10 |
+
# Number of speakers
|
11 |
+
out_n_neurons: 107
|
12 |
+
|
13 |
+
# Functions
|
14 |
+
compute_features: !new:speechbrain.lobes.features.Fbank
|
15 |
+
n_mels: 60
|
16 |
+
left_frames: 0
|
17 |
+
right_frames: 0
|
18 |
+
deltas: false
|
19 |
+
|
20 |
+
embedding_model: !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
21 |
+
input_size: 60
|
22 |
+
channels: [1024, 1024, 1024, 1024, 3072]
|
23 |
+
kernel_sizes: [5, 3, 3, 3, 1]
|
24 |
+
dilations: [1, 2, 3, 4, 1]
|
25 |
+
attention_channels: 128
|
26 |
+
lin_neurons: 256
|
27 |
+
|
28 |
+
classifier: !new:speechbrain.lobes.models.ECAPA_TDNN.Classifier
|
29 |
+
input_size: 256
|
30 |
+
out_neurons: !ref <out_n_neurons>
|
31 |
+
|
32 |
+
mean_var_norm: !new:speechbrain.processing.features.InputNormalization
|
33 |
+
norm_type: sentence
|
34 |
+
std_norm: false
|
35 |
+
|
36 |
+
modules:
|
37 |
+
compute_features: !ref <compute_features>
|
38 |
+
mean_var_norm: !ref <mean_var_norm>
|
39 |
+
embedding_model: !ref <embedding_model>
|
40 |
+
classifier: !ref <classifier>
|
41 |
+
|
42 |
+
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
|
43 |
+
|
44 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
45 |
+
loadables:
|
46 |
+
embedding_model: !ref <embedding_model>
|
47 |
+
classifier: !ref <classifier>
|
48 |
+
label_encoder: !ref <label_encoder>
|
49 |
+
paths:
|
50 |
+
embedding_model: !ref <pretrained_path>/embedding_model.ckpt
|
51 |
+
classifier: !ref <pretrained_path>/classifier.ckpt
|
52 |
+
label_encoder: !ref <pretrained_path>/label_encoder.txt
|
label_encoder.txt
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'ab' => 0
|
2 |
+
'af' => 1
|
3 |
+
'am' => 2
|
4 |
+
'ar' => 3
|
5 |
+
'as' => 4
|
6 |
+
'az' => 5
|
7 |
+
'ba' => 6
|
8 |
+
'be' => 7
|
9 |
+
'bg' => 8
|
10 |
+
'bn' => 9
|
11 |
+
'bo' => 10
|
12 |
+
'br' => 11
|
13 |
+
'bs' => 12
|
14 |
+
'ca' => 13
|
15 |
+
'ceb' => 14
|
16 |
+
'cs' => 15
|
17 |
+
'cy' => 16
|
18 |
+
'da' => 17
|
19 |
+
'de' => 18
|
20 |
+
'el' => 19
|
21 |
+
'en' => 20
|
22 |
+
'eo' => 21
|
23 |
+
'es' => 22
|
24 |
+
'et' => 23
|
25 |
+
'eu' => 24
|
26 |
+
'fa' => 25
|
27 |
+
'fi' => 26
|
28 |
+
'fo' => 27
|
29 |
+
'fr' => 28
|
30 |
+
'gl' => 29
|
31 |
+
'gn' => 30
|
32 |
+
'gu' => 31
|
33 |
+
'gv' => 32
|
34 |
+
'ha' => 33
|
35 |
+
'haw' => 34
|
36 |
+
'hi' => 35
|
37 |
+
'hr' => 36
|
38 |
+
'ht' => 37
|
39 |
+
'hu' => 38
|
40 |
+
'hy' => 39
|
41 |
+
'ia' => 40
|
42 |
+
'id' => 41
|
43 |
+
'is' => 42
|
44 |
+
'it' => 43
|
45 |
+
'iw' => 44
|
46 |
+
'ja' => 45
|
47 |
+
'jw' => 46
|
48 |
+
'ka' => 47
|
49 |
+
'kk' => 48
|
50 |
+
'km' => 49
|
51 |
+
'kn' => 50
|
52 |
+
'ko' => 51
|
53 |
+
'la' => 52
|
54 |
+
'lb' => 53
|
55 |
+
'ln' => 54
|
56 |
+
'lo' => 55
|
57 |
+
'lt' => 56
|
58 |
+
'lv' => 57
|
59 |
+
'mg' => 58
|
60 |
+
'mi' => 59
|
61 |
+
'mk' => 60
|
62 |
+
'ml' => 61
|
63 |
+
'mn' => 62
|
64 |
+
'mr' => 63
|
65 |
+
'ms' => 64
|
66 |
+
'mt' => 65
|
67 |
+
'my' => 66
|
68 |
+
'ne' => 67
|
69 |
+
'nl' => 68
|
70 |
+
'nn' => 69
|
71 |
+
'no' => 70
|
72 |
+
'oc' => 71
|
73 |
+
'pa' => 72
|
74 |
+
'pl' => 73
|
75 |
+
'ps' => 74
|
76 |
+
'pt' => 75
|
77 |
+
'ro' => 76
|
78 |
+
'ru' => 77
|
79 |
+
'sa' => 78
|
80 |
+
'sco' => 79
|
81 |
+
'sd' => 80
|
82 |
+
'si' => 81
|
83 |
+
'sk' => 82
|
84 |
+
'sl' => 83
|
85 |
+
'sn' => 84
|
86 |
+
'so' => 85
|
87 |
+
'sq' => 86
|
88 |
+
'sr' => 87
|
89 |
+
'su' => 88
|
90 |
+
'sv' => 89
|
91 |
+
'sw' => 90
|
92 |
+
'ta' => 91
|
93 |
+
'te' => 92
|
94 |
+
'tg' => 93
|
95 |
+
'th' => 94
|
96 |
+
'tk' => 95
|
97 |
+
'tl' => 96
|
98 |
+
'tr' => 97
|
99 |
+
'tt' => 98
|
100 |
+
'uk' => 99
|
101 |
+
'ur' => 100
|
102 |
+
'uz' => 101
|
103 |
+
'vi' => 102
|
104 |
+
'war' => 103
|
105 |
+
'yi' => 104
|
106 |
+
'yo' => 105
|
107 |
+
'zh' => 106
|
108 |
+
================
|
109 |
+
'starting_index' => 0
|
normalizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99327453c38bd629b7479ea440b8efa59332d636555fa6738f1d3e360d6cad28
|
3 |
+
size 1153
|