AlehsanAliyev's picture
updating model.py
32cc8bc verified
from transformers import PreTrainedModel, PretrainedConfig
import torch.nn as nn
import torch
import torch.nn.functional as F
class BiLSTMConfig(PretrainedConfig):
model_type = "bilstm"
def __init__(self, vocab_size=64000, embedding_dim=1024, hidden_dim=512, num_labels=3, **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.num_labels = num_labels
class BiLSTMClassifier(PreTrainedModel):
config_class = BiLSTMConfig
def __init__(self, config: BiLSTMConfig):
super().__init__(config)
self.embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
self.lstm = nn.LSTM(config.embedding_dim, config.hidden_dim, batch_first=True, bidirectional=True)
self.fc = nn.Linear(config.hidden_dim * 2, config.num_labels)
self.post_init()
def forward(self, input_ids, attention_mask=None, labels=None):
x = self.embedding(input_ids)
_, (h_n, _) = self.lstm(x)
h_cat = torch.cat((h_n[0], h_n[1]), dim=1)
logits = self.fc(h_cat)
if labels is not None:
loss = F.cross_entropy(logits, labels)
return {"loss": loss, "logits": logits}
return {"logits": logits}