|
from transformers import PreTrainedModel, PretrainedConfig |
|
import torch.nn as nn |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
class BiLSTMConfig(PretrainedConfig): |
|
model_type = "bilstm" |
|
|
|
def __init__(self, vocab_size=64000, embedding_dim=1024, hidden_dim=512, num_labels=3, **kwargs): |
|
super().__init__(**kwargs) |
|
self.vocab_size = vocab_size |
|
self.embedding_dim = embedding_dim |
|
self.hidden_dim = hidden_dim |
|
self.num_labels = num_labels |
|
|
|
class BiLSTMClassifier(PreTrainedModel): |
|
config_class = BiLSTMConfig |
|
|
|
def __init__(self, config: BiLSTMConfig): |
|
super().__init__(config) |
|
self.embedding = nn.Embedding(config.vocab_size, config.embedding_dim) |
|
self.lstm = nn.LSTM(config.embedding_dim, config.hidden_dim, batch_first=True, bidirectional=True) |
|
self.fc = nn.Linear(config.hidden_dim * 2, config.num_labels) |
|
|
|
self.post_init() |
|
|
|
def forward(self, input_ids, attention_mask=None, labels=None): |
|
x = self.embedding(input_ids) |
|
_, (h_n, _) = self.lstm(x) |
|
h_cat = torch.cat((h_n[0], h_n[1]), dim=1) |
|
logits = self.fc(h_cat) |
|
|
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
return {"loss": loss, "logits": logits} |
|
return {"logits": logits} |
|
|