Safetensors
qwen3
File size: 1,526 Bytes
6b2e913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np

prompt_template = """Given a query and a document, please give a relevance score of 0~10.
The goal or relevance definition is: {instruction}

Here is the query:
{query}

Here is the document:
{doc}

After thinking, directly choose a relevance score from [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
- 0 represents completely not related
- 10 means perfectly related.

Desired output format:
<think>put your thinking here</think><answer>Only allows an integer here</answer>

Your output:"""


def truncate(tokenizer, text, length):
    if length == None or text == None:
        return text
    return tokenizer.convert_tokens_to_string(tokenizer.tokenize(text)[:length])


def hybrid_scores(results, alpha):
    first_stage_scores = [each["first_stage_score"] for each in results]
    rank_scores = [each["rank_score"] for each in results]
    first_stage_mean, first_stage_std = np.mean(first_stage_scores), np.std(first_stage_scores)
    rank_mean, rank_std = np.mean(rank_scores), np.std(rank_scores)
    
    hybrid_results = []
    for result in results:
        normalized_first_stage_score = (result["first_stage_score"] - first_stage_mean) / first_stage_std
        normalized_rank_score = (result["rank_score"] - rank_mean) / rank_std
        hybrid_results.append({
            **result,
            "hybrid_score": float(alpha * normalized_first_stage_score + (1-alpha) * normalized_rank_score)
        }) 
    hybrid_results.sort(key=lambda x:x['hybrid_score'], reverse=True)

    return hybrid_results