Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
<div align="center">
|
6 |
+
<h1>ERank: Fusing Supervised Fine-Tuning and Reinforcement Learning for Effective and Efficient Text Reranking</h1>
|
7 |
+
</div>
|
8 |
+
|
9 |
+
<p align="center">
|
10 |
+
<a href="https://arxiv.org/abs/">Arxiv</a>  |  <a href="https://github.com/YZ-Cai/ERank">Github</a>
|
11 |
+
</p>
|
12 |
+
|
13 |
+
## Introduction
|
14 |
+
|
15 |
+
We introduce ERANK, a highly effective and efficient pointwise reranker built from a reasoning LLM, which excels across diverse relevance scenarios with low latency.
|
16 |
+
Surprisingly, it also outperforms recent listwise rerankers on the most challenging reasoning-intensive tasks.
|
17 |
+
|
18 |
+
<img src="./assets/overview.png">
|
19 |
+
|
20 |
+
ERank is trained with a novel two-stage training pipeline, i.e., Supervised Fine-Tuning (SFT) and Reinforcement
|
21 |
+
Learning (RL).
|
22 |
+
During the SFT stage, unlike traidtional pointwise rerankers that train the LLMs for binary relevance classification, we encourage the LLM to generatively output fine grained integer scores.
|
23 |
+
In the RL training, we introduce a novel listwise derived reward, which instills global ranking awareness into the efficient
|
24 |
+
pointwise architecture.
|
25 |
+
|
26 |
+
## Model List
|
27 |
+
|
28 |
+
We provide the trained reranking models in various sizes (4B, 14B and 32B), all of which support customizing the input instruction according to different tasks.
|
29 |
+
|
30 |
+
| Model | Size | Layers | Sequence Length | Instruction Aware |
|
31 |
+
|------------------------------------------|------|--------|-----------------|-------------------|
|
32 |
+
| [ERank-4B](https://huggingface.co/Alibaba-NLP/ERank-4B) | 4B | 36 | 32K | Yes |
|
33 |
+
| [ERank-14B](https://huggingface.co/Alibaba-NLP/ERank-14B) | 14B | 40 | 128K | Yes |
|
34 |
+
| [ERank-32B](https://huggingface.co/Alibaba-NLP/ERank-32B) | 32B | 64 | 128K | Yes |
|
35 |
+
|
36 |
+
## Evaluation
|
37 |
+
|
38 |
+
We evaluate ERank on both reasoning-intensive benchmarks (BRIGHT and FollowIR) and traditional semantic relevance benchmarks (BEIR and TREC DL).
|
39 |
+
All methods use the original queries without hybrid scores.
|
40 |
+
|
41 |
+
| Paradigm | Method | Average | BRIGHT | FollowIR | BEIR | TREC DL |
|
42 |
+
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|
43 |
+
| - | First-stage retriever | 25.9 | 13.7 | 0 | 40.8 | 49.3 |
|
44 |
+
| Listwise | Rank-R1-7B | 34.6 | 15.7 | 3.6 | **49.0** | 70.0 |
|
45 |
+
| Listwise | Rearank-7B | 35.3 | 17.4 | 2.3 | **49.0** | **72.5** |
|
46 |
+
| Pointwise | JudgeRank-8B | 32.1 | 17.0 | 9.9 | 39.1 | 62.6 |
|
47 |
+
| Pointwise | Rank1-7B | 34.6 | 18.2 | 9.1 | 44.2 | 67.1 |
|
48 |
+
| Pointwise | **ERank-4B (Ours)** | 36.8 | 22.7 | 11.0 | 44.8 | 68.9 |
|
49 |
+
| Pointwise | **ERank-14B (Ours)** | 36.9 | 23.1 | 10.3 | 47.1 | 67.1 |
|
50 |
+
| Pointwise | **ERank-32B (Ours)** | **38.1** | **24.4** | **12.1** | 47.7 | 68.1 |
|
51 |
+
|
52 |
+
On the most challenging BRIGHT benchmark, with top-100 documents retrieved by ReasonIR-8B using GPT-4 reason-query, ERank with BM25 hybrid achieves the state-of-the-art NDCG@10.
|
53 |
+
|
54 |
+
| Method | nDCG@10 |
|
55 |
+
| :--- | :--- |
|
56 |
+
| ReasonIR-8B | 30.5 |
|
57 |
+
| Rank-R1-7B | 24.1 |
|
58 |
+
| Rank1-7B | 24.3 |
|
59 |
+
| Rearank-7B | 27.5 |
|
60 |
+
| JudgeRank-8B | 20.2 |
|
61 |
+
| *+ BM25 hybrid* | 22.7 |
|
62 |
+
| Rank-R1-32B-v0.2 | 37.7 |
|
63 |
+
| *+ BM25 hybrid* | 40.0 |
|
64 |
+
| **ERank-4B (Ours)** | 30.5 |
|
65 |
+
| *+ BM25 hybrid* | 38.7 |
|
66 |
+
| **ERank-14B (Ours)** | 31.8 |
|
67 |
+
| *+ BM25 hybrid* | 39.3 |
|
68 |
+
| **ERank-32B (Ours)** | 32.8 |
|
69 |
+
| *+ BM25 hybrid* | **40.2** |
|
70 |
+
|
71 |
+
Since ERank is a pointwise reranker, it has low latency compared with listwise models.
|
72 |
+
|
73 |
+
<div align="center">
|
74 |
+
<img src="./assets/latency.png" width=400px>
|
75 |
+
</div>
|
76 |
+
|
77 |
+
For more details, please refer to our [Paper](https://arxiv.org/abs/).
|
78 |
+
|
79 |
+
## Usage
|
80 |
+
|
81 |
+
We have implemented the inference code based on Transformer and vLLM, respectively.
|
82 |
+
|
83 |
+
```python
|
84 |
+
from examples.ERank_Transformer import ERank_Transformer
|
85 |
+
from examples.ERank_vLLM import ERank_vLLM
|
86 |
+
from examples.utils import hybrid_scores
|
87 |
+
|
88 |
+
# select a model
|
89 |
+
model_name_or_path = "Alibaba-NLP/ERank-4B"
|
90 |
+
# model_name_or_path = "Alibaba-NLP/ERank-14B"
|
91 |
+
# model_name_or_path = "Alibaba-NLP/ERank-32B"
|
92 |
+
|
93 |
+
# use vLLM or Transformer
|
94 |
+
# reranker = ERank_Transformer(model_name_or_path)
|
95 |
+
reranker = ERank_vLLM(model_name_or_path)
|
96 |
+
|
97 |
+
# input data
|
98 |
+
instruction = "Retrieve relevant documents for the query."
|
99 |
+
query = "I am happy"
|
100 |
+
docs = [
|
101 |
+
{"content": "excited", "first_stage_score": 46.7},
|
102 |
+
{"content": "sad", "first_stage_score": 1.5},
|
103 |
+
{"content": "peaceful", "first_stage_score": 2.3},
|
104 |
+
]
|
105 |
+
|
106 |
+
# rerank
|
107 |
+
results = reranker.rerank(query, docs, instruction, truncate_length=2048)
|
108 |
+
print(results)
|
109 |
+
# [
|
110 |
+
# {'content': 'excited', 'first_stage_score': 46.7, 'rank_score': 4.84},
|
111 |
+
# {'content': 'peaceful', 'first_stage_score': 2.3, 'rank_score': 2.98}
|
112 |
+
# {'content': 'sad', 'first_stage_score': 1.5, 'rank_score': 0.0},
|
113 |
+
# ]
|
114 |
+
|
115 |
+
# Optional: hybrid with first-stage scores
|
116 |
+
alpha = 0.2
|
117 |
+
hybrid_results = hybrid_scores(results, alpha)
|
118 |
+
print(hybrid_results)
|
119 |
+
# [
|
120 |
+
# {'content': 'excited', 'first_stage_score': 46.7, 'rank_score': 4.84, 'hybrid_score': 1.18},
|
121 |
+
# {'content': 'peaceful', 'first_stage_score': 2.3, 'rank_score': 2.98, 'hybrid_score':0.01},
|
122 |
+
# {'content': 'sad', 'first_stage_score': 1.5, 'rank_score': 0.0, 'hybrid_score': -1.19}
|
123 |
+
# ]
|
124 |
+
```
|
125 |
+
|
126 |
+
Please refer to the `examples` directory for details, in which we also provide the instructions used in the prompt during evaluation.
|
127 |
+
|
128 |
+
|
129 |
+
## Citation
|
130 |
+
If you find our work helpful, feel free to give us a cite.
|
131 |
+
|
132 |
+
```
|
133 |
+
|
134 |
+
```
|