Create gme_inference.py
Browse files- gme_inference.py +331 -0
gme_inference.py
ADDED
|
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
from typing import Dict, List, Optional
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from torch.utils.data import DataLoader
|
| 11 |
+
from tqdm.autonotebook import tqdm
|
| 12 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class GmeQwen2VL:
|
| 16 |
+
def __init__(
|
| 17 |
+
self,
|
| 18 |
+
model_name: str = "Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
| 19 |
+
model_path: Optional[str] = None,
|
| 20 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
| 21 |
+
min_image_tokens=256,
|
| 22 |
+
max_image_tokens=1280,
|
| 23 |
+
max_length=1800,
|
| 24 |
+
**kwargs,
|
| 25 |
+
) -> None:
|
| 26 |
+
model_name = model_path or model_name
|
| 27 |
+
self.base = AutoModelForVision2Seq.from_pretrained(
|
| 28 |
+
model_name, torch_dtype=torch.float16, **kwargs
|
| 29 |
+
)
|
| 30 |
+
self.base.eval()
|
| 31 |
+
self.normalize = True
|
| 32 |
+
self.device = device
|
| 33 |
+
min_pixels = min_image_tokens * 28 * 28
|
| 34 |
+
max_pixels = max_image_tokens * 28 * 28
|
| 35 |
+
self.max_length = max_length
|
| 36 |
+
self.processor = AutoProcessor.from_pretrained(
|
| 37 |
+
model_name, min_pixels=min_pixels, max_pixels=max_pixels, **kwargs
|
| 38 |
+
)
|
| 39 |
+
self.processor.tokenizer.padding_side = 'right'
|
| 40 |
+
self.defualt_instruction = 'You are a helpful assistant.'
|
| 41 |
+
self.sep = ' '
|
| 42 |
+
|
| 43 |
+
def forward(
|
| 44 |
+
self,
|
| 45 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 46 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 47 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 48 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 49 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 50 |
+
pixel_values: Optional[torch.Tensor] = None,
|
| 51 |
+
# pixel_values_videos: Optional[torch.FloatTensor] = None,
|
| 52 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
| 53 |
+
# video_grid_thw: Optional[torch.LongTensor] = None,
|
| 54 |
+
pooling_mask: Optional[torch.LongTensor] = None,
|
| 55 |
+
**kwargs
|
| 56 |
+
) -> torch.Tensor:
|
| 57 |
+
if inputs_embeds is None:
|
| 58 |
+
inputs_embeds = self.base.model.embed_tokens(input_ids)
|
| 59 |
+
if pixel_values is not None:
|
| 60 |
+
pixel_values = pixel_values.type(self.base.visual.get_dtype())
|
| 61 |
+
image_embeds = self.base.visual(pixel_values, grid_thw=image_grid_thw).to(inputs_embeds.device)
|
| 62 |
+
image_mask = input_ids == self.base.config.image_token_id
|
| 63 |
+
inputs_embeds[image_mask] = image_embeds
|
| 64 |
+
# if pixel_values_videos is not None:
|
| 65 |
+
# pixel_values_videos = pixel_values_videos.type(self.base.visual.get_dtype())
|
| 66 |
+
# video_embeds = self.base.visual(pixel_values_videos, grid_thw=video_grid_thw).to(inputs_embeds.device)
|
| 67 |
+
# video_mask = input_ids == self.base.config.video_token_id
|
| 68 |
+
# inputs_embeds[video_mask] = video_embeds
|
| 69 |
+
if attention_mask is not None:
|
| 70 |
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
| 71 |
+
|
| 72 |
+
outputs = self.base.model(
|
| 73 |
+
input_ids=None,
|
| 74 |
+
position_ids=position_ids,
|
| 75 |
+
attention_mask=attention_mask,
|
| 76 |
+
past_key_values=past_key_values,
|
| 77 |
+
inputs_embeds=inputs_embeds,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
pooling_mask = attention_mask if pooling_mask is None else pooling_mask
|
| 81 |
+
left_padding = (pooling_mask[:, -1].sum() == pooling_mask.shape[0]) # TODO
|
| 82 |
+
if left_padding:
|
| 83 |
+
embeddings = outputs.last_hidden_state[:, -1]
|
| 84 |
+
else:
|
| 85 |
+
sequence_lengths = pooling_mask.sum(dim=1) - 1
|
| 86 |
+
batch_size = outputs.last_hidden_state.shape[0]
|
| 87 |
+
embeddings = outputs.last_hidden_state[torch.arange(
|
| 88 |
+
batch_size, device=outputs.last_hidden_state.device
|
| 89 |
+
), sequence_lengths]
|
| 90 |
+
if self.normalize:
|
| 91 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 92 |
+
return embeddings.contiguous()
|
| 93 |
+
|
| 94 |
+
def embed(self, texts: list[str], images: list[Image.Image], is_query=True, instruction=None, **kwargs):
|
| 95 |
+
self.base.to(self.device)
|
| 96 |
+
# Inputs must be batched
|
| 97 |
+
input_texts, input_images = list(), list()
|
| 98 |
+
for t, i in zip(texts, images):
|
| 99 |
+
if not is_query or instruction is None:
|
| 100 |
+
instruction = self.defualt_instruction
|
| 101 |
+
input_str = ''
|
| 102 |
+
if i is None:
|
| 103 |
+
input_images = None # All examples in the same batch are consistent
|
| 104 |
+
else:
|
| 105 |
+
input_str += '<|vision_start|><|image_pad|><|vision_end|>'
|
| 106 |
+
i = fetch_image(i)
|
| 107 |
+
input_images.append(i)
|
| 108 |
+
if t is not None:
|
| 109 |
+
input_str += t
|
| 110 |
+
msg = f'<|im_start|>system\n{instruction}<|im_end|>\n<|im_start|>user\n{input_str}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>'
|
| 111 |
+
input_texts.append(msg)
|
| 112 |
+
|
| 113 |
+
inputs = self.processor(
|
| 114 |
+
text=input_texts,
|
| 115 |
+
images=input_images,
|
| 116 |
+
padding=True,
|
| 117 |
+
truncation=True,
|
| 118 |
+
max_length=self.max_length,
|
| 119 |
+
return_tensors='pt'
|
| 120 |
+
)
|
| 121 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()} # TODO
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
embeddings = self.forward(**inputs)
|
| 124 |
+
return embeddings
|
| 125 |
+
|
| 126 |
+
def encode(self, sentences: list[str], *, prompt_name=None, **kwargs):
|
| 127 |
+
return self.get_fused_embeddings(texts=sentences, prompt_name=prompt_name, **kwargs)
|
| 128 |
+
|
| 129 |
+
def encode_queries(self, queries: List[str], **kwargs):
|
| 130 |
+
embeddings = self.encode(queries, **kwargs)
|
| 131 |
+
return embeddings
|
| 132 |
+
|
| 133 |
+
def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs):
|
| 134 |
+
if type(corpus) is dict:
|
| 135 |
+
sentences = [
|
| 136 |
+
(corpus["title"][i] + self.sep + corpus["text"][i]).strip()
|
| 137 |
+
if "title" in corpus
|
| 138 |
+
else corpus["text"][i].strip()
|
| 139 |
+
for i in range(len(corpus["text"]))
|
| 140 |
+
]
|
| 141 |
+
else:
|
| 142 |
+
sentences = [
|
| 143 |
+
(doc["title"] + self.sep + doc["text"]).strip() if "title" in doc else doc["text"].strip()
|
| 144 |
+
for doc in corpus
|
| 145 |
+
]
|
| 146 |
+
embeddings = self.encode(sentences, is_query=False, **kwargs)
|
| 147 |
+
return embeddings
|
| 148 |
+
|
| 149 |
+
def get_image_embeddings(self, images: list[Image.Image] | DataLoader, **kwargs):
|
| 150 |
+
return self.get_fused_embeddings(images=images, **kwargs)
|
| 151 |
+
|
| 152 |
+
def get_text_embeddings(self, texts: list[str], **kwargs):
|
| 153 |
+
return self.get_fused_embeddings(texts=texts, **kwargs)
|
| 154 |
+
|
| 155 |
+
def get_fused_embeddings(self, texts: list[str] = None, images: list[Image.Image] | DataLoader = None, **kwargs):
|
| 156 |
+
if isinstance(images, DataLoader):
|
| 157 |
+
image_loader = images
|
| 158 |
+
batch_size = image_loader.batch_size
|
| 159 |
+
image_loader.dataset.transform = None
|
| 160 |
+
else:
|
| 161 |
+
batch_size = kwargs.pop('batch_size', 32)
|
| 162 |
+
if images is None:
|
| 163 |
+
image_loader = None
|
| 164 |
+
else:
|
| 165 |
+
image_loader = DataLoader(
|
| 166 |
+
images,
|
| 167 |
+
batch_size=batch_size,
|
| 168 |
+
shuffle=False,
|
| 169 |
+
collate_fn=custom_collate_fn,
|
| 170 |
+
num_workers=min(math.floor(os.cpu_count() / 2), 8),
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if texts is None:
|
| 174 |
+
assert image_loader is not None
|
| 175 |
+
n_batch = len(image_loader)
|
| 176 |
+
else:
|
| 177 |
+
n_batch = len(texts) // batch_size + int(len(texts) % batch_size > 0)
|
| 178 |
+
image_loader = image_loader or [None] * n_batch
|
| 179 |
+
|
| 180 |
+
all_embeddings = list()
|
| 181 |
+
none_batch = [None] * batch_size
|
| 182 |
+
show_progress_bar = kwargs.pop('show_progress_bar', True)
|
| 183 |
+
pbar = tqdm(total=n_batch, disable=not show_progress_bar, mininterval=1, miniters=10, desc='encode')
|
| 184 |
+
for n, img_batch in zip(range(0, n_batch * batch_size, batch_size), image_loader):
|
| 185 |
+
text_batch = none_batch if texts is None else texts[n: n+batch_size]
|
| 186 |
+
img_batch = none_batch if img_batch is None else img_batch
|
| 187 |
+
embeddings = self.embed(texts=text_batch, images=img_batch, **kwargs)
|
| 188 |
+
pbar.update(1)
|
| 189 |
+
all_embeddings.append(embeddings.cpu())
|
| 190 |
+
pbar.close()
|
| 191 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
| 192 |
+
return all_embeddings
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def custom_collate_fn(batch):
|
| 196 |
+
return batch
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
### Copied from qwen_vl_utils.vision_process.py
|
| 200 |
+
import base64
|
| 201 |
+
from io import BytesIO
|
| 202 |
+
import requests
|
| 203 |
+
|
| 204 |
+
IMAGE_FACTOR = 28
|
| 205 |
+
MIN_PIXELS = 4 * 28 * 28
|
| 206 |
+
MAX_PIXELS = 16384 * 28 * 28
|
| 207 |
+
MAX_RATIO = 200
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def round_by_factor(number: int, factor: int) -> int:
|
| 211 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 212 |
+
return round(number / factor) * factor
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def ceil_by_factor(number: int, factor: int) -> int:
|
| 216 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 217 |
+
return math.ceil(number / factor) * factor
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def floor_by_factor(number: int, factor: int) -> int:
|
| 221 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 222 |
+
return math.floor(number / factor) * factor
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def smart_resize(
|
| 226 |
+
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
|
| 227 |
+
) -> tuple[int, int]:
|
| 228 |
+
"""
|
| 229 |
+
Rescales the image so that the following conditions are met:
|
| 230 |
+
|
| 231 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 232 |
+
|
| 233 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 234 |
+
|
| 235 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 236 |
+
"""
|
| 237 |
+
h_bar = max(factor, round_by_factor(height, factor))
|
| 238 |
+
w_bar = max(factor, round_by_factor(width, factor))
|
| 239 |
+
if h_bar * w_bar > max_pixels:
|
| 240 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 241 |
+
h_bar = floor_by_factor(height / beta, factor)
|
| 242 |
+
w_bar = floor_by_factor(width / beta, factor)
|
| 243 |
+
elif h_bar * w_bar < min_pixels:
|
| 244 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 245 |
+
h_bar = ceil_by_factor(height * beta, factor)
|
| 246 |
+
w_bar = ceil_by_factor(width * beta, factor)
|
| 247 |
+
|
| 248 |
+
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
| 249 |
+
logging.warning(
|
| 250 |
+
f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
| 251 |
+
)
|
| 252 |
+
if h_bar > w_bar:
|
| 253 |
+
h_bar = w_bar * MAX_RATIO
|
| 254 |
+
else:
|
| 255 |
+
w_bar = h_bar * MAX_RATIO
|
| 256 |
+
return h_bar, w_bar
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def fetch_image(image: str | Image.Image, size_factor: int = IMAGE_FACTOR) -> Image.Image:
|
| 260 |
+
image_obj = None
|
| 261 |
+
if isinstance(image, Image.Image):
|
| 262 |
+
image_obj = image
|
| 263 |
+
elif image.startswith("http://") or image.startswith("https://"):
|
| 264 |
+
image_obj = Image.open(requests.get(image, stream=True).raw)
|
| 265 |
+
elif image.startswith("file://"):
|
| 266 |
+
image_obj = Image.open(image[7:])
|
| 267 |
+
elif image.startswith("data:image"):
|
| 268 |
+
if "base64," in image:
|
| 269 |
+
_, base64_data = image.split("base64,", 1)
|
| 270 |
+
data = base64.b64decode(base64_data)
|
| 271 |
+
image_obj = Image.open(BytesIO(data))
|
| 272 |
+
else:
|
| 273 |
+
image_obj = Image.open(image)
|
| 274 |
+
if image_obj is None:
|
| 275 |
+
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
|
| 276 |
+
image = image_obj.convert("RGB")
|
| 277 |
+
## resize
|
| 278 |
+
# if "resized_height" in ele and "resized_width" in ele:
|
| 279 |
+
# resized_height, resized_width = smart_resize(
|
| 280 |
+
# ele["resized_height"],
|
| 281 |
+
# ele["resized_width"],
|
| 282 |
+
# factor=size_factor,
|
| 283 |
+
# )
|
| 284 |
+
# else:
|
| 285 |
+
width, height = image.size
|
| 286 |
+
# min_pixels = ele.get("min_pixels", MIN_PIXELS)
|
| 287 |
+
# max_pixels = ele.get("max_pixels", MAX_PIXELS)
|
| 288 |
+
resized_height, resized_width = smart_resize(
|
| 289 |
+
height,
|
| 290 |
+
width,
|
| 291 |
+
factor=size_factor,
|
| 292 |
+
min_pixels=MIN_PIXELS,
|
| 293 |
+
max_pixels=MAX_PIXELS,
|
| 294 |
+
)
|
| 295 |
+
image = image.resize((resized_width, resized_height))
|
| 296 |
+
|
| 297 |
+
return image
|
| 298 |
+
###
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
if __name__ == '__main__':
|
| 302 |
+
texts = [
|
| 303 |
+
"What kind of car is this?",
|
| 304 |
+
"The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
|
| 305 |
+
]
|
| 306 |
+
images = [
|
| 307 |
+
# 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
|
| 308 |
+
'/nas-alinlp/linzhang.zx/gme_space/assets/Tesla_Cybertruck_damaged_window.jpg',
|
| 309 |
+
# 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
| 310 |
+
'/nas-alinlp/linzhang.zx/gme_space/assets/2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
|
| 311 |
+
]
|
| 312 |
+
|
| 313 |
+
gme = GmeQwen2VL("/nas-alinlp/linzhang.zx/gme_space/gme-Qwen2-VL-2B-instruct")
|
| 314 |
+
|
| 315 |
+
# Single-modal embedding
|
| 316 |
+
e_text = gme.get_text_embeddings(texts=texts)
|
| 317 |
+
e_image = gme.get_image_embeddings(images=images)
|
| 318 |
+
print((e_text * e_image).sum(-1))
|
| 319 |
+
## tensor([0.2281, 0.6001], dtype=torch.float16)
|
| 320 |
+
|
| 321 |
+
# How to set embedding instruction
|
| 322 |
+
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
|
| 323 |
+
# If is_query=False, we always use the default instruction.
|
| 324 |
+
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
|
| 325 |
+
print((e_query * e_corpus).sum(-1))
|
| 326 |
+
## tensor([0.2433, 0.7051], dtype=torch.float16)
|
| 327 |
+
|
| 328 |
+
# Fused-modal embedding
|
| 329 |
+
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
|
| 330 |
+
print((e_fused[0] * e_fused[1]).sum())
|
| 331 |
+
## tensor(0.6108, dtype=torch.float16)
|