Update README.md
Browse files
README.md
CHANGED
|
@@ -5,6 +5,82 @@ tags:
|
|
| 5 |
- transformers
|
| 6 |
- sentence-transformers
|
| 7 |
- text-embeddings-inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
## gte-multilingual-reranker-base
|
|
@@ -22,6 +98,10 @@ The **gte-multilingual-reranker-base** model is the first reranker model in the
|
|
| 22 |
|
| 23 |
|
| 24 |
### Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
Using Huggingface transformers (transformers>=4.36.0)
|
| 27 |
```
|
|
@@ -31,7 +111,10 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
| 31 |
model_name_or_path = "Alibaba-NLP/gte-multilingual-reranker-base"
|
| 32 |
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 34 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
|
|
|
|
|
|
| 35 |
model.eval()
|
| 36 |
|
| 37 |
pairs = [["中国的首都在哪儿","北京"], ["what is the capital of China?", "北京"], ["how to implement quick sort in python?","Introduction of quick sort"]]
|
|
@@ -43,8 +126,6 @@ with torch.no_grad():
|
|
| 43 |
# tensor([1.2315, 0.5923, 0.3041])
|
| 44 |
```
|
| 45 |
|
| 46 |
-
### How to use it offline
|
| 47 |
-
Refer to [Disable trust_remote_code](https://huggingface.co/Alibaba-NLP/new-impl/discussions/2#662b08d04d8c3d0a09c88fa3)
|
| 48 |
|
| 49 |
## Evaluation
|
| 50 |
|
|
|
|
| 5 |
- transformers
|
| 6 |
- sentence-transformers
|
| 7 |
- text-embeddings-inference
|
| 8 |
+
language:
|
| 9 |
+
- af
|
| 10 |
+
- ar
|
| 11 |
+
- az
|
| 12 |
+
- be
|
| 13 |
+
- bg
|
| 14 |
+
- bn
|
| 15 |
+
- ca
|
| 16 |
+
- ceb
|
| 17 |
+
- cs
|
| 18 |
+
- cy
|
| 19 |
+
- da
|
| 20 |
+
- de
|
| 21 |
+
- el
|
| 22 |
+
- en
|
| 23 |
+
- es
|
| 24 |
+
- et
|
| 25 |
+
- eu
|
| 26 |
+
- fa
|
| 27 |
+
- fi
|
| 28 |
+
- fr
|
| 29 |
+
- gl
|
| 30 |
+
- gu
|
| 31 |
+
- he
|
| 32 |
+
- hi
|
| 33 |
+
- hr
|
| 34 |
+
- ht
|
| 35 |
+
- hu
|
| 36 |
+
- hy
|
| 37 |
+
- id
|
| 38 |
+
- is
|
| 39 |
+
- it
|
| 40 |
+
- ja
|
| 41 |
+
- jv
|
| 42 |
+
- ka
|
| 43 |
+
- kk
|
| 44 |
+
- km
|
| 45 |
+
- kn
|
| 46 |
+
- ko
|
| 47 |
+
- ky
|
| 48 |
+
- lo
|
| 49 |
+
- lt
|
| 50 |
+
- lv
|
| 51 |
+
- mk
|
| 52 |
+
- ml
|
| 53 |
+
- mn
|
| 54 |
+
- mr
|
| 55 |
+
- ms
|
| 56 |
+
- my
|
| 57 |
+
- ne
|
| 58 |
+
- nl
|
| 59 |
+
- 'no'
|
| 60 |
+
- pa
|
| 61 |
+
- pl
|
| 62 |
+
- pt
|
| 63 |
+
- qu
|
| 64 |
+
- ro
|
| 65 |
+
- ru
|
| 66 |
+
- si
|
| 67 |
+
- sk
|
| 68 |
+
- sl
|
| 69 |
+
- so
|
| 70 |
+
- sq
|
| 71 |
+
- sr
|
| 72 |
+
- sv
|
| 73 |
+
- sw
|
| 74 |
+
- ta
|
| 75 |
+
- te
|
| 76 |
+
- th
|
| 77 |
+
- tl
|
| 78 |
+
- tr
|
| 79 |
+
- uk
|
| 80 |
+
- ur
|
| 81 |
+
- vi
|
| 82 |
+
- yo
|
| 83 |
+
- zh
|
| 84 |
---
|
| 85 |
|
| 86 |
## gte-multilingual-reranker-base
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
### Usage
|
| 101 |
+
- **It is recommended to install xformers and enable unpadding for acceleration,
|
| 102 |
+
refer to [enable-unpadding-and-xformers](https://huggingface.co/Alibaba-NLP/new-impl#recommendation-enable-unpadding-and-acceleration-with-xformers).**
|
| 103 |
+
- **How to use it offline: [new-impl/discussions/2](https://huggingface.co/Alibaba-NLP/new-impl/discussions/2#662b08d04d8c3d0a09c88fa3)**
|
| 104 |
+
|
| 105 |
|
| 106 |
Using Huggingface transformers (transformers>=4.36.0)
|
| 107 |
```
|
|
|
|
| 111 |
model_name_or_path = "Alibaba-NLP/gte-multilingual-reranker-base"
|
| 112 |
|
| 113 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 114 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 115 |
+
model_name_or_path, trust_remote_code=True,
|
| 116 |
+
torch_dtype=torch.float16
|
| 117 |
+
)
|
| 118 |
model.eval()
|
| 119 |
|
| 120 |
pairs = [["中国的首都在哪儿","北京"], ["what is the capital of China?", "北京"], ["how to implement quick sort in python?","Introduction of quick sort"]]
|
|
|
|
| 126 |
# tensor([1.2315, 0.5923, 0.3041])
|
| 127 |
```
|
| 128 |
|
|
|
|
|
|
|
| 129 |
|
| 130 |
## Evaluation
|
| 131 |
|