Alpaca69B commited on
Commit
7eb2829
·
verified ·
1 Parent(s): 1679ef9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -176
README.md CHANGED
@@ -3,199 +3,84 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
 
 
 
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
 
 
 
 
 
 
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ # phi2-2b-absa: Fine-Tuned Aspect-Based Sentiment Analysis Model
9
 
10
+ ## Model Description
11
 
12
+ The **phi2-2b-absa** model is a fine-tuned aspect-based sentiment analysis (ABSA) model based on the Microsoft Phi-2 model. It has been trained on the **semeval2016-full-absa-reviews-english-translated-resampled** dataset. The model predicts sentiments towards different aspects mentioned in a given sentence.
13
 
14
+ ## Fine-Tuning Details
15
 
16
+ The fine tuning can be revisited on [Google Colab](https://colab.research.google.com/drive/1n3ykETLpHQPXwPhUcOe-z9cG3ThrDkSi?usp=sharing).
17
 
18
+ ### Dataset
19
+ - **Name:** semeval2016-full-absa-reviews-english-translated-resampled
20
+ - **Description:** Annotated dataset for ABSA containing sentences, aspects, sentiments, and additional contextual text. It is split into train and test sets.
21
 
22
+ ### Model Architecture
23
+ - **Base Model:** Microsoft Phi-2
24
+ - **Fine-Tuned Model:** phi2-2b-absa
25
 
26
+ ### Fine-Tuning Parameters
27
+ - **LoRA Attention Dimension (lora_r):** 64
28
+ - **LoRA Scaling Parameter (lora_alpha):** 16
29
+ - **LoRA Dropout Probability (lora_dropout):** 0.1
30
 
31
+ ### BitsAndBytes Quantization
32
+ - **Activate 4-bit Precision:** True
33
+ - **Compute Dtype for 4-bit Models:** float16
34
+ - **Quantization Type:** nf4
35
 
36
+ ### Training Parameters
37
+ - **Number of Training Epochs:** 1
38
+ - **Batch Size per GPU for Training:** 4
39
+ - **Batch Size per GPU for Evaluation:** 4
40
+ - **Gradient Accumulation Steps:** 1
41
+ - **Learning Rate:** 2e-4
42
+ - **Weight Decay:** 0.001
43
+ - **Optimizer:** PagedAdamW (32-bit)
44
+ - **Learning Rate Scheduler:** Cosine
45
 
46
+ ### SFT Parameters
47
+ - **Maximum Sequence Length:** None
48
+ - **Packing:** False
49
 
50
+ ## How to Use
51
 
52
+ ```
53
+ from transformers import AutoTokenizer, pipeline
54
+ import torch
55
 
56
+ model = "Alpaca69B/llama-2-7b-absa-semeval-2016"
57
+ prompt = "### Human: the first thing that attracts attention is the warm reception and the smiling receptionists. excellent service where the staff make sure that you got your request and keep you comfortable. very nice swimming pool and a gym that suits a 5-star hotel."
58
 
59
+ tokenizer = AutoTokenizer.from_pretrained(model)
60
+ pipeline = pipeline(
61
+ "text-generation",
62
+ model=model,
63
+ tokenizer=tokenizer,
64
+ torch_dtype=torch.float16,
65
+ device="auto",
66
+ )
67
 
68
+ input_sentence = "the first thing that attracts attention is the warm reception and the smiling receptionists."
69
+ sequences = pipeline(
70
+ f'### Human: {input_sentence} ### Assistant: aspect:',
71
+ do_sample=True,
72
+ top_k=10,
73
+ num_return_sequences=1,
74
+ eos_token_id=tokenizer.eos_token_id,
75
+ max_length=200,
76
+ )
77
+ sequences[0]['generated_text']
78
 
79
+ ```
80
 
81
+ Testing can be seen on [Google Colab](https://colab.research.google.com/drive/1eKdZYYWiivyeCQDsocGBstVODMLZyT-_?usp=sharing)
82
 
83
+ ## Acknowledgments
84
 
85
+ - The fine-tuning process and model development were performed by Ben Kampmann.
86
+ ---