--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 044aa982-77ec-4ccd-8673-6fe56a6ead5c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0abd4f15c54dfd02_train_data.json ds_type: json format: custom path: /workspace/input_data/0abd4f15c54dfd02_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/044aa982-77ec-4ccd-8673-6fe56a6ead5c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1734 micro_batch_size: 4 mlflow_experiment_name: /tmp/0abd4f15c54dfd02_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 491aeb28-6ff2-4aa4-891a-9f22abb8674d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 491aeb28-6ff2-4aa4-891a-9f22abb8674d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 044aa982-77ec-4ccd-8673-6fe56a6ead5c This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1463 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9717 | 0.0014 | 1 | 1.3161 | | 0.9185 | 0.1368 | 100 | 1.0059 | | 1.0704 | 0.2736 | 200 | 0.9539 | | 0.9694 | 0.4103 | 300 | 0.9232 | | 0.8839 | 0.5471 | 400 | 0.9017 | | 1.1157 | 0.6839 | 500 | 0.8851 | | 0.6632 | 0.8207 | 600 | 0.8703 | | 0.8919 | 0.9574 | 700 | 0.8595 | | 1.0428 | 1.0942 | 800 | 0.8556 | | 0.8294 | 1.2310 | 900 | 0.8510 | | 0.858 | 1.3678 | 1000 | 0.8442 | | 0.9121 | 1.5045 | 1100 | 0.8393 | | 0.6549 | 1.6413 | 1200 | 0.8359 | | 0.9418 | 1.7781 | 1300 | 0.8342 | | 0.8205 | 1.9149 | 1400 | 0.8338 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1