--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 1a43e5c4-855d-416a-b8ec-a2a916cb7907 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 68ef826ced66c8c7_train_data.json ds_type: json format: custom path: /workspace/input_data/68ef826ced66c8c7_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 400 eval_table_size: null flash_attention: true gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/1a43e5c4-855d-416a-b8ec-a2a916cb7907 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 7351 micro_batch_size: 2 mlflow_experiment_name: /tmp/68ef826ced66c8c7_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 400 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.033916240452578315 wandb_entity: null wandb_mode: online wandb_name: f214522a-6979-41cd-a80c-d566c41b01d8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f214522a-6979-41cd-a80c-d566c41b01d8 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 1a43e5c4-855d-416a-b8ec-a2a916cb7907 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 7351 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7224 | 0.0001 | 1 | 2.1008 | | 0.8266 | 0.0225 | 400 | 0.8611 | | 0.95 | 0.0449 | 800 | 0.8325 | | 0.916 | 0.0674 | 1200 | 0.8323 | | 0.9649 | 0.0899 | 1600 | 0.8187 | | 1.0447 | 0.1123 | 2000 | 0.8094 | | 0.9421 | 0.1348 | 2400 | 0.8086 | | 0.759 | 0.1573 | 2800 | 0.8016 | | 0.8835 | 0.1797 | 3200 | 0.7898 | | 1.0793 | 0.2022 | 3600 | 0.7785 | | 0.8628 | 0.2247 | 4000 | 0.7755 | | 0.8557 | 0.2472 | 4400 | 0.7677 | | 0.6361 | 0.2696 | 4800 | 0.7604 | | 0.5638 | 0.2921 | 5200 | 0.7556 | | 1.1077 | 0.3146 | 5600 | 0.7485 | | 0.8949 | 0.3370 | 6000 | 0.7458 | | 0.885 | 0.3595 | 6400 | 0.7437 | | 1.1648 | 0.3820 | 6800 | 0.7415 | | 1.0295 | 0.4044 | 7200 | 0.7412 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1