--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 47df94be-b459-4f7e-b986-4e35d785e9c6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d466cf0a618a6d44_train_data.json ds_type: json format: custom path: /workspace/input_data/d466cf0a618a6d44_train_data.json type: field_input: context field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: false gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/47df94be-b459-4f7e-b986-4e35d785e9c6 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 966 micro_batch_size: 4 mlflow_experiment_name: /tmp/d466cf0a618a6d44_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.011452812123488802 wandb_entity: null wandb_mode: online wandb_name: 9c8b08cf-d8fc-4fe1-9436-20a6f16a593b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9c8b08cf-d8fc-4fe1-9436-20a6f16a593b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 47df94be-b459-4f7e-b986-4e35d785e9c6 This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4092 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 966 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.2163 | 0.0001 | 1 | 3.4837 | | 1.4579 | 0.0074 | 100 | 1.5107 | | 1.3924 | 0.0148 | 200 | 1.5177 | | 1.4023 | 0.0222 | 300 | 1.4957 | | 1.419 | 0.0297 | 400 | 1.4808 | | 1.2275 | 0.0371 | 500 | 1.4610 | | 1.4388 | 0.0445 | 600 | 1.4429 | | 1.3089 | 0.0519 | 700 | 1.4245 | | 1.7182 | 0.0593 | 800 | 1.4133 | | 1.6928 | 0.0667 | 900 | 1.4092 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1