--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: 82da4164-7ca8-4b2e-82cb-cf077fe314f5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-3B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cfe4cfbd460d8124_train_data.json ds_type: json format: custom path: /workspace/input_data/cfe4cfbd460d8124_train_data.json type: field_input: OriginalAddress1 field_instruction: PermitTypeDesc field_output: Description format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/82da4164-7ca8-4b2e-82cb-cf077fe314f5 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2011 micro_batch_size: 4 mlflow_experiment_name: /tmp/cfe4cfbd460d8124_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04127830659875009 wandb_entity: null wandb_mode: online wandb_name: 1c0ec80c-26dd-4dfe-858e-1b40744d4a00 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c0ec80c-26dd-4dfe-858e-1b40744d4a00 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 82da4164-7ca8-4b2e-82cb-cf077fe314f5 This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2011 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5394 | 0.0003 | 1 | 4.5230 | | 1.9022 | 0.0276 | 100 | 1.7936 | | 1.6432 | 0.0551 | 200 | 1.7068 | | 1.5876 | 0.0827 | 300 | 1.6605 | | 1.7241 | 0.1102 | 400 | 1.6289 | | 1.2011 | 0.1378 | 500 | 1.6054 | | 1.5357 | 0.1653 | 600 | 1.5869 | | 1.532 | 0.1929 | 700 | 1.5657 | | 1.6306 | 0.2204 | 800 | 1.5495 | | 1.7204 | 0.2480 | 900 | 1.5271 | | 1.616 | 0.2755 | 1000 | 1.5105 | | 1.4012 | 0.3031 | 1100 | 1.4984 | | 1.6245 | 0.3307 | 1200 | 1.4835 | | 1.4906 | 0.3582 | 1300 | 1.4692 | | 1.6158 | 0.3858 | 1400 | 1.4579 | | 1.5505 | 0.4133 | 1500 | 1.4491 | | 1.5439 | 0.4409 | 1600 | 1.4409 | | 1.5436 | 0.4684 | 1700 | 1.4351 | | 1.6966 | 0.4960 | 1800 | 1.4305 | | 1.387 | 0.5235 | 1900 | 1.4287 | | 1.0875 | 0.5511 | 2000 | 1.4282 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1