--- license: mit library_name: peft --- ## Training procedure Finally, it looks like overfitting has been circumvented. ```python Train metrics: {'eval_loss': 0.11367090046405792, 'eval_accuracy': 0.961073623713503, 'eval_precision': 0.3506606081587021, 'eval_recall': 0.9097597679932995, 'eval_f1': 0.5062071663690367, 'eval_auc': 0.9359920115129883, 'eval_mcc': 0.5513080553639849} Test metrics: {'eval_loss': 0.11328430473804474, 'eval_accuracy': 0.9604888971537066, 'eval_precision': 0.34630886072474065, 'eval_recall': 0.9135862937475725, 'eval_f1': 0.5022370749476722, 'eval_auc': 0.9375606817360377, 'eval_mcc': 0.5489185177475369} ``` ### Framework versions - PEFT 0.5.0