--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-Router-large-v2 results: [] --- # BERT-Router-large-v2 This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3815 - Accuracy: 0.838 - Auc: 0.951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Auc | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:-----:|:--------:|:---------------:| | 0.3719 | 1.0 | 12 | 0.949 | 0.835 | 0.3895 | | 0.3741 | 2.0 | 24 | 0.949 | 0.835 | 0.3886 | | 0.3673 | 3.0 | 36 | 0.949 | 0.836 | 0.3879 | | 0.3692 | 4.0 | 48 | 0.949 | 0.836 | 0.3873 | | 0.3724 | 5.0 | 60 | 0.3866| 0.836 | 0.95 | | 0.3683 | 6.0 | 72 | 0.3859| 0.836 | 0.95 | | 0.3678 | 7.0 | 84 | 0.3853| 0.836 | 0.95 | | 0.3671 | 8.0 | 96 | 0.3847| 0.837 | 0.95 | | 0.3614 | 9.0 | 108 | 0.3842| 0.837 | 0.95 | | 0.3658 | 10.0 | 120 | 0.3838| 0.837 | 0.95 | | 0.3681 | 11.0 | 132 | 0.3834| 0.837 | 0.95 | | 0.3642 | 12.0 | 144 | 0.3831| 0.837 | 0.95 | | 0.3659 | 13.0 | 156 | 0.3827| 0.837 | 0.95 | | 0.3693 | 14.0 | 168 | 0.3823| 0.838 | 0.95 | | 0.3637 | 15.0 | 180 | 0.3820| 0.838 | 0.951 | | 0.3596 | 16.0 | 192 | 0.3819| 0.838 | 0.951 | | 0.3732 | 17.0 | 204 | 0.3817| 0.838 | 0.951 | | 0.3685 | 18.0 | 216 | 0.3816| 0.838 | 0.951 | | 0.3613 | 19.0 | 228 | 0.3815| 0.838 | 0.951 | | 0.3656 | 20.0 | 240 | 0.3815| 0.838 | 0.951 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3