Amirhossein75 commited on
Commit
5161553
·
1 Parent(s): 4726a31

add correct usage in huggingface

Browse files
Files changed (1) hide show
  1. README.md +27 -0
README.md CHANGED
@@ -89,6 +89,33 @@ This project fine‑tunes a Wav2Vec2 audio classifier (e.g., `facebook/wav2vec2-
89
 
90
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Evaluate on target devices/microphones; add noise augmentation and tune detection thresholds for deployment context.
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  ## How to Get Started with the Model
93
 
94
  Use the code below to get started with the model.
 
89
 
90
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Evaluate on target devices/microphones; add noise augmentation and tune detection thresholds for deployment context.
91
 
92
+ ## How to use it in HuggingFace
93
+ ```bash
94
+ from transformers import AutoFeatureExtractor, AutoModelForAudioClassification, pipeline
95
+
96
+ model_id = "Amirhossein75/Keyword-Spotting"
97
+ ```
98
+ # Option A — simple:
99
+ ```bash
100
+ clf = pipeline("audio-classification", model=model_id)
101
+ print(clf("path/to/1sec_16kHz.wav"))
102
+ ```
103
+
104
+ # Option B — manual pre/post:
105
+ ```bash
106
+ fe = AutoFeatureExtractor.from_pretrained(model_id)
107
+ model = AutoModelForAudioClassification.from_pretrained(model_id)
108
+
109
+ import soundfile as sf, torch
110
+ wave, sr = sf.read("path/to/1sec_16kHz.wav")
111
+ inputs = fe(wave, sampling_rate=sr, return_tensors="pt")
112
+ with torch.no_grad():
113
+ logits = model(**inputs).logits
114
+ pred_id = int(logits.argmax(-1))
115
+ print(model.config.id2label[pred_id])
116
+
117
+ ```
118
+
119
  ## How to Get Started with the Model
120
 
121
  Use the code below to get started with the model.