--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards { "library_name": "transformers", "pipeline_tag": "image-to-text", "license": "apache-2.0", "tags": [ "vision-language", "image-captioning", "SmolVLM", "LoRA", "QLoRA", "COCO", "peft", "accelerate" ], "base_model": "HuggingFaceTB/SmolVLM-Instruct", "datasets": ["jxie/coco_captions"], "language": ["en"], "widget": [ { "text": "Give a concise caption.", "src": "https://images.cocodataset.org/val2014/COCO_val2014_000000522418.jpg" } ] } --- # Model Card for **Image-Captioning-VLM (SmolVLM + COCO, LoRA/QLoRA)** This repository provides a compact **vision–language image captioning model** built by fine-tuning **SmolVLM-Instruct** with **LoRA/QLoRA** adapters on the **MS COCO Captions** dataset. The goal is to offer an easy-to-train, memory‑efficient captioner for research, data labeling, and diffusion training workflows while keeping the **vision tower frozen** and adapting the language/cross‑modal components. > **TL;DR** > > - Base: `HuggingFaceTB/SmolVLM-Instruct` (Apache-2.0). > - Training data: `jxie/coco_captions` (English captions). > - Method: LoRA/QLoRA SFT; **vision encoder frozen**. > - Intended use: generate concise or descriptive captions for general images. > - Not intended for high-stakes or safety-critical uses. --- ## Model Details ### Model Description - **Developed by:** *Amirhossein Yousefi* (GitHub: `amirhossein-yousefi`) - **Model type:** Vision–Language (**image → text**) captioning model with LoRA/QLoRA adapters on top of **SmolVLM-Instruct** - **Language(s):** English - **License:** **Apache-2.0** for the released model artifacts (inherits from the base model’s license); dataset retains its own license (see *Training Data*) - **Finetuned from:** `HuggingFaceTB/SmolVLM-Instruct` SmolVLM couples a **shape-optimized SigLIP** vision tower with a compact **SmolLM2** decoder via a multimodal projector and runs via `AutoModelForVision2Seq`. This project fine-tunes the language-side with LoRA/QLoRA while **freezing the vision tower** to keep memory use low and training simple. ### Model Sources - **Repository:** https://github.com/amirhossein-yousefi/Image-Captioning-VLM - **Base model card:** https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct - **Base technical report :** https://arxiv.org/abs/2504.05299 (SmolVLM) - **Dataset (training):** https://huggingface.co/datasets/jxie/coco_captions --- ## Uses ### Direct Use - Generate **concise** or **descriptive** captions for natural images. - Provide **alt text**/accessibility descriptions (human review recommended). - Produce captions for **vision dataset bootstrapping** or **diffusion training** pipelines. **Quickstart (inference script from this repo):** ```bash python inference_vlm.py \ --base_model_id HuggingFaceTB/SmolVLM-Instruct \ --adapter_dir outputs/smolvlm-coco-lora \ --image https://images.cocodataset.org/val2014/COCO_val2014_000000522418.jpg \ --prompt "Give a concise caption." ``` **Programmatic example (PEFT LoRA):** ```python import torch from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq from peft import PeftModel device = "cuda" if torch.cuda.is_available() else "cpu" base = "HuggingFaceTB/SmolVLM-Instruct" adapter_dir = "outputs/smolvlm-coco-lora" # path from training processor = AutoProcessor.from_pretrained(base) model = AutoModelForVision2Seq.from_pretrained( base, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32 ).to(device) # Load LoRA/QLoRA adapter model = PeftModel.from_pretrained(model, adapter_dir).to(device) model.eval() image = Image.open("sample.jpg").convert("RGB") messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Give a concise caption."}]}] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) ids = model.generate(**inputs, max_new_tokens=64) print(processor.batch_decode(ids, skip_special_tokens=True)[0]) ``` ### Downstream Use - As a **captioning stage** within multi-step data pipelines (e.g., labeling, retrieval augmentation, dataset curation). - As a starting point for **continued fine-tuning** on specialized domains (e.g., medical imagery, artwork) with domain-appropriate data and review. ### Out-of-Scope Use - **High-stakes** or **safety-critical** settings (medical, legal, surveillance, credit decisions, etc.). - Automated systems where **factuality, fairness, or safety** must be guaranteed without **human in the loop**. - Parsing small text (OCR) or reading sensitive PII from images; this model is not optimized for OCR. --- ## Bias, Risks, and Limitations - **Data bias:** COCO captions are predominantly English and reflect biases of their sources; generated captions may mirror societal stereotypes. - **Content coverage:** General-purpose images work best; performance may degrade on domains underrepresented in COCO (e.g., medical scans, satellite imagery). - **Safety:** Captions may occasionally be **inaccurate**, **overconfident**, or **hallucinated**. Always review before downstream use, especially for accessibility. ### Recommendations - Keep a **human in the loop** for sensitive or impactful applications. - When adapting to new domains, curate **diverse, representative** training sets and evaluate with domain-specific metrics and audits. - Log model outputs and collect review feedback to iteratively improve quality. --- ## How to Get Started with the Model **Environment setup** ```bash python -m venv .venv && source .venv/bin/activate pip install -r requirements.txt # (If on NVIDIA & want QLoRA) ensure bitsandbytes is installed; or use: --use_qlora false ``` **Fine-tune (LoRA/QLoRA; frozen vision tower)** ```bash python train_vlm_sft.py \ --base_model_id HuggingFaceTB/SmolVLM-Instruct \ --dataset_id jxie/coco_captions \ --output_dir outputs/smolvlm-coco-lora \ --epochs 1 --batch_size 2 --grad_accum 8 \ --max_seq_len 1024 --image_longest_edge 1536 ``` --- ## Training Details ### Training Data - **Dataset:** `jxie/coco_captions` (English captions for MS COCO images). - **Notes:** COCO provides **~617k** caption examples with **5 captions per image**; images come from Flickr with their own terms. Please review the dataset card and the original COCO license/terms before use. ### Training Procedure #### Preprocessing - Images are resized with **longest_edge = 1536** (consistent with SmolVLM’s 384×384 patching strategy at N=4). - Text sequences truncated/padded to **max_seq_len = 1024**. #### Training Hyperparameters - **Regime:** Supervised fine-tuning with **LoRA** (or **QLoRA**) on the language-side parameters; **vision tower frozen**. - **Example CLI:** see above. Mixed precision (`bf16` on CUDA) recommended if available. #### Speeds, Sizes, Times - The base SmolVLM reports **~5 GB min GPU RAM** for inference; fine-tuning requires more VRAM depending on batch size/sequence length. See the base card for details. --- ## Evaluation ### 📊 Score card(on subsample of main data) **All scores increase with higher values (↑).** For visualization, `CIDEr` is shown ×100 in the chart to match the 0–100 scale of other metrics. | Split | CIDEr | CLIPScore | BLEU-4 | METEOR | ROUGE-L | BERTScore-F1 | Images | |:-------------|------:|----------:|-------:|-------:|--------:|-------------:|------:| | **Test** | 0.560 | 30.830 | 15.73 | 47.84 | 45.18 | 91.73 | 1000 | | **Validation**| 0.540 | 31.068 | 16.01 | 48.28 | 45.11 | 91.80 | 1000 | ### Quick read on the metrics - **CIDEr** — consensus with human captions; higher is better for human-like phrasing (0–>1 typical). - **CLIPScore** — reference-free image–text compatibility via CLIP’s cosine similarity (commonly rescaled). - **BLEU‑4** — 4‑gram precision with brevity penalty (lexical match). - **METEOR** — unigram match with stemming/synonyms, emphasizes recall. - **ROUGE‑L** — longest common subsequence overlap (structure/recall‑leaning). - **BERTScore‑F1** — semantic similarity using contextual embeddings. ### Testing Data, Factors & Metrics #### Testing Data - Hold out a portion of **COCO val** (e.g., `val2014`) or custom images for qualitative/quantitative evaluation. #### Factors - **Image domain** (indoor/outdoor), **object density**, **scene complexity**, and **presence of small text** (OCR-like) can affect performance. #### Metrics - Strong **semantic alignment** (BERTScore-F1 ≈ **91.8** on *val*), and balanced lexical overlap (BLEU-4 ≈ **16.0**). - **CIDEr** is slightly higher on *test* (0.560) vs. *val* (0.540); other metrics are near parity across splits. - Trained & evaluated with the minimal pipeline in the repo (LoRA/QLoRA-ready). - This repo includes `eval_caption_metric.py` scaffolding. ### Results - Publish your scores here after running the evaluation script (e.g., CIDEr, BLEU-4) and include qualitative examples. #### Summary - The LoRA/QLoRA approach provides **memory‑efficient adaptation** while preserving the strong generalization of SmolVLM on image–text tasks. --- ## Model Examination - You may inspect token attributions or visualize attention over image regions using third-party tools; no built‑in interpretability tooling is shipped here. --- ## 🖥️ Training Hardware & Environment - **Device:** Laptop (Windows, WDDM driver model) - **GPU:** NVIDIA GeForce **RTX 3080 Ti Laptop GPU** (16 GB VRAM) - **Driver:** **576.52** - **CUDA (driver):** **12.9** - **PyTorch:** **2.8.0+cu129** - **CUDA available:** ✅ ## 📊 Training Metrics - **Total FLOPs (training):** `26,387,224,652,152,830` - **Training runtime:** `5,664.0825` seconds --- ## Technical Specifications ### Model Architecture and Objective - **Architecture:** SmolVLM-style VLM with **SigLIP** vision tower, **SmolLM2** decoder, and a **multimodal projector**; trained here via **SFT with LoRA/QLoRA** for **image captioning**. - **Objective:** Next-token generation conditioned on image tokens + text prompt (image → text). ### Compute Infrastructure #### Hardware - Works on consumer GPUs for inference; fine‑tuning VRAM depends on adapter choice and batch size. #### Software - Python, PyTorch, `transformers`, `peft`, `accelerate`, `datasets`, `evaluate`, optional `bitsandbytes` for QLoRA. --- ## Citation If you use this repository or the resulting model, please cite: **BibTeX:** ```bibtex @software{ImageCaptioningVLM2025, author = {Yousefi, Amir Hossein}, title = {Image-Captioning-VLM: LoRA/QLoRA fine-tuning of SmolVLM for image captioning}, year = {2025}, url = {https://github.com/amirhossein-yousefi/Image-Captioning-VLM} } ``` Also cite the **base model** and **dataset** as appropriate (see their pages). **APA:** Yousefi, A. H. (2025). *Image-Captioning-VLM: LoRA/QLoRA fine-tuning of SmolVLM for image captioning* [Computer software]. https://github.com/amirhossein-yousefi/Image-Captioning-VLM --- ## Glossary - **LoRA/QLoRA:** Low‑Rank (Quantized) Adapters that enable parameter‑efficient fine‑tuning. - **Vision tower:** The vision encoder (SigLIP) that turns image patches into tokens. - **SFT:** Supervised Fine‑Tuning. --- ## More Information - For issues and feature requests, open a GitHub issue on the repository. --- ## Model Card Authors - Amirhossein Yousefi (maintainer) - Contributors welcome (via PRs) --- ## Model Card Contact - Open an issue: https://github.com/amirhossein-yousefi/Image-Captioning-VLM/issues