Commit
·
e339308
1
Parent(s):
1e3e764
add modeling architecture
Browse files- config.json +1 -0
- modeling_wav2vec2_ctc_and_intensity.py +98 -0
config.json
CHANGED
@@ -8,6 +8,7 @@
|
|
8 |
"architectures": [
|
9 |
"Wav2Vec2ForCTCAndIntensity"
|
10 |
],
|
|
|
11 |
"attention_dropout": 0.1,
|
12 |
"bos_token_id": 1,
|
13 |
"classifier_proj_size": 256,
|
|
|
8 |
"architectures": [
|
9 |
"Wav2Vec2ForCTCAndIntensity"
|
10 |
],
|
11 |
+
"AutoModelForCTC": "Amirhossein75/speech-intensity-wav2vec--modeling_wav2vec2_ctc_and_intensity.Wav2Vec2ForCTCAndIntensity",
|
12 |
"attention_dropout": 0.1,
|
13 |
"bos_token_id": 1,
|
14 |
"classifier_proj_size": 256,
|
modeling_wav2vec2_ctc_and_intensity.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import Optional, Union, Tuple
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import Wav2Vec2ForCTC
|
6 |
+
from transformers.modeling_outputs import CausalLMOutput
|
7 |
+
try:
|
8 |
+
from transformers.modeling_outputs import CTCOutput # older versions
|
9 |
+
except ImportError:
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Optional, Tuple
|
12 |
+
import torch
|
13 |
+
from transformers.modeling_outputs import ModelOutput
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class CTCOutput(ModelOutput):
|
17 |
+
loss: Optional[torch.FloatTensor] = None
|
18 |
+
logits: torch.FloatTensor = None
|
19 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
20 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
21 |
+
class Wav2Vec2ForCTCAndIntensity(Wav2Vec2ForCTC):
|
22 |
+
"""Wav2Vec2-CTC with an additional regression head for intensity.
|
23 |
+
Pools the last hidden state with attention mask then MLP -> scalar.
|
24 |
+
"""
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__(config)
|
27 |
+
hidden = config.hidden_size
|
28 |
+
self.intensity_head = nn.Sequential(
|
29 |
+
nn.Dropout(0.1),
|
30 |
+
nn.Linear(hidden, 128),
|
31 |
+
nn.GELU(),
|
32 |
+
nn.Linear(128, 1),
|
33 |
+
)
|
34 |
+
self.mse = nn.MSELoss()
|
35 |
+
|
36 |
+
def forward(
|
37 |
+
self,
|
38 |
+
input_values: Optional[torch.FloatTensor] = None,
|
39 |
+
attention_mask: Optional[torch.Tensor] = None,
|
40 |
+
labels: Optional[torch.LongTensor] = None,
|
41 |
+
intensity_value: Optional[torch.FloatTensor] = None,
|
42 |
+
lambda_intensity: float = 1.0,
|
43 |
+
output_attentions: Optional[bool] = None,
|
44 |
+
output_hidden_states: Optional[bool] = True,
|
45 |
+
return_dict: Optional[bool] = True,
|
46 |
+
**kwargs
|
47 |
+
) -> Union[Tuple, CTCOutput]:
|
48 |
+
outputs = super().forward(
|
49 |
+
input_values=input_values,
|
50 |
+
attention_mask=attention_mask,
|
51 |
+
labels=labels,
|
52 |
+
output_attentions=output_attentions,
|
53 |
+
output_hidden_states=True,
|
54 |
+
return_dict=True,
|
55 |
+
**kwargs
|
56 |
+
)
|
57 |
+
|
58 |
+
# Use last hidden state for regression: (B, T, H)
|
59 |
+
hidden = outputs.hidden_states[-1] if outputs.hidden_states is not None else None
|
60 |
+
intensity_pred = None
|
61 |
+
if hidden is not None:
|
62 |
+
if attention_mask is not None:
|
63 |
+
# Masked mean pooling over time
|
64 |
+
mask = attention_mask.unsqueeze(-1).to(hidden.dtype) # (B, T, 1)
|
65 |
+
summed = (hidden * mask).sum(dim=1)
|
66 |
+
denom = mask.sum(dim=1).clamp(min=1.0)
|
67 |
+
pooled = summed / denom
|
68 |
+
else:
|
69 |
+
pooled = hidden.mean(dim=1)
|
70 |
+
intensity_pred = self.intensity_head(pooled).squeeze(-1)
|
71 |
+
|
72 |
+
ctc_loss = outputs.loss if getattr(outputs, "loss", None) is not None else None
|
73 |
+
intensity_loss = None
|
74 |
+
if (intensity_pred is not None) and (intensity_value is not None):
|
75 |
+
intensity_loss = self.mse(intensity_pred, intensity_value)
|
76 |
+
|
77 |
+
loss = None
|
78 |
+
if (ctc_loss is not None) and (intensity_loss is not None):
|
79 |
+
loss = ctc_loss + lambda_intensity * intensity_loss
|
80 |
+
elif ctc_loss is not None:
|
81 |
+
loss = ctc_loss
|
82 |
+
elif intensity_loss is not None:
|
83 |
+
loss = lambda_intensity * intensity_loss
|
84 |
+
|
85 |
+
if not return_dict:
|
86 |
+
out = list(outputs)
|
87 |
+
if intensity_pred is not None:
|
88 |
+
out.append(intensity_pred)
|
89 |
+
if loss is not None:
|
90 |
+
out[0] = loss
|
91 |
+
return tuple(out)
|
92 |
+
|
93 |
+
return CTCOutput(
|
94 |
+
loss=loss,
|
95 |
+
logits=outputs.logits,
|
96 |
+
hidden_states=outputs.hidden_states,
|
97 |
+
attentions=outputs.attentions,
|
98 |
+
)
|