Amoros commited on
Commit
0086753
·
verified ·
1 Parent(s): 40dd681

Evaluation on the test set completed on 2025_05_06.

Browse files
README.md CHANGED
@@ -1,4 +1,121 @@
1
  ---
 
 
 
2
  tags:
3
- - hf-summary-writer
 
 
 
 
 
4
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/dinov2-small
5
  tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: DinoAmoros-small-2025_05_06_36794-prova_bs16_freeze_monolabel
11
+ results: []
12
  ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # DinoAmoros-small-2025_05_06_36794-prova_bs16_freeze_monolabel
18
+
19
+ This model is a fine-tuned version of [facebook/dinov2-small](https://huggingface.co/facebook/dinov2-small) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 2.8192
22
+ - F1 Micro: 0.4
23
+ - F1 Macro: 0.2333
24
+ - Accuracy: 0.4
25
+ - Learning Rate: 1e-05
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.001
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 150
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Accuracy | Rate |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:------:|
57
+ | No log | 1.0 | 1 | 3.1980 | 0.0 | 0.0 | 0.0 | 0.001 |
58
+ | No log | 2.0 | 2 | 3.1316 | 0.0 | 0.0 | 0.0 | 0.001 |
59
+ | No log | 3.0 | 3 | 3.125 | 0.0 | 0.0 | 0.0 | 0.001 |
60
+ | No log | 4.0 | 4 | 3.1275 | 0.0 | 0.0 | 0.0 | 0.001 |
61
+ | No log | 5.0 | 5 | 3.0676 | 0.1 | 0.0571 | 0.1 | 0.001 |
62
+ | No log | 6.0 | 6 | 3.0656 | 0.1 | 0.0571 | 0.1 | 0.001 |
63
+ | No log | 7.0 | 7 | 3.0043 | 0.1 | 0.05 | 0.1 | 0.001 |
64
+ | No log | 8.0 | 8 | 2.9486 | 0.3 | 0.1531 | 0.3 | 0.001 |
65
+ | No log | 9.0 | 9 | 2.8736 | 0.4 | 0.2816 | 0.4 | 0.001 |
66
+ | No log | 10.0 | 10 | 2.8121 | 0.4 | 0.2816 | 0.4 | 0.001 |
67
+ | No log | 11.0 | 11 | 2.7541 | 0.6 | 0.4028 | 0.6 | 0.001 |
68
+ | No log | 12.0 | 12 | 2.6967 | 0.6 | 0.4028 | 0.6 | 0.001 |
69
+ | No log | 13.0 | 13 | 2.6596 | 0.6 | 0.4841 | 0.6 | 0.001 |
70
+ | No log | 14.0 | 14 | 2.6483 | 0.5 | 0.3571 | 0.5 | 0.001 |
71
+ | No log | 15.0 | 15 | 2.6144 | 0.5 | 0.3571 | 0.5 | 0.001 |
72
+ | No log | 16.0 | 16 | 2.5909 | 0.5 | 0.3571 | 0.5 | 0.001 |
73
+ | No log | 17.0 | 17 | 2.5481 | 0.5 | 0.4286 | 0.5 | 0.001 |
74
+ | No log | 18.0 | 18 | 2.5126 | 0.5 | 0.3619 | 0.5 | 0.001 |
75
+ | No log | 19.0 | 19 | 2.4791 | 0.5 | 0.4286 | 0.5 | 0.001 |
76
+ | No log | 20.0 | 20 | 2.4738 | 0.5 | 0.4286 | 0.5 | 0.001 |
77
+ | No log | 21.0 | 21 | 2.4310 | 0.5 | 0.4286 | 0.5 | 0.001 |
78
+ | No log | 22.0 | 22 | 2.4030 | 0.5 | 0.4286 | 0.5 | 0.001 |
79
+ | No log | 23.0 | 23 | 2.4001 | 0.5 | 0.4286 | 0.5 | 0.001 |
80
+ | No log | 24.0 | 24 | 2.3993 | 0.5 | 0.4286 | 0.5 | 0.001 |
81
+ | No log | 25.0 | 25 | 2.3928 | 0.5 | 0.4286 | 0.5 | 0.001 |
82
+ | No log | 26.0 | 26 | 2.3896 | 0.5 | 0.4286 | 0.5 | 0.001 |
83
+ | No log | 27.0 | 27 | 2.3909 | 0.5 | 0.4286 | 0.5 | 0.001 |
84
+ | No log | 28.0 | 28 | 2.3772 | 0.5 | 0.4286 | 0.5 | 0.001 |
85
+ | No log | 29.0 | 29 | 2.3432 | 0.5 | 0.4286 | 0.5 | 0.001 |
86
+ | No log | 30.0 | 30 | 2.3192 | 0.5 | 0.4286 | 0.5 | 0.001 |
87
+ | No log | 31.0 | 31 | 2.3088 | 0.6 | 0.5476 | 0.6 | 0.001 |
88
+ | No log | 32.0 | 32 | 2.3004 | 0.6 | 0.5476 | 0.6 | 0.001 |
89
+ | No log | 33.0 | 33 | 2.3044 | 0.6 | 0.5476 | 0.6 | 0.001 |
90
+ | No log | 34.0 | 34 | 2.2979 | 0.6 | 0.5476 | 0.6 | 0.001 |
91
+ | No log | 35.0 | 35 | 2.3048 | 0.6 | 0.5476 | 0.6 | 0.001 |
92
+ | No log | 36.0 | 36 | 2.2987 | 0.6 | 0.5476 | 0.6 | 0.001 |
93
+ | No log | 37.0 | 37 | 2.2997 | 0.6 | 0.5476 | 0.6 | 0.001 |
94
+ | No log | 38.0 | 38 | 2.3195 | 0.6 | 0.5476 | 0.6 | 0.001 |
95
+ | No log | 39.0 | 39 | 2.3158 | 0.5 | 0.4286 | 0.5 | 0.001 |
96
+ | No log | 40.0 | 40 | 2.3083 | 0.5 | 0.4286 | 0.5 | 0.001 |
97
+ | No log | 41.0 | 41 | 2.2830 | 0.5 | 0.4286 | 0.5 | 0.0001 |
98
+ | No log | 42.0 | 42 | 2.2719 | 0.5 | 0.4286 | 0.5 | 0.0001 |
99
+ | No log | 43.0 | 43 | 2.2404 | 0.5 | 0.4286 | 0.5 | 0.0001 |
100
+ | No log | 44.0 | 44 | 2.2439 | 0.5 | 0.4286 | 0.5 | 0.0001 |
101
+ | No log | 45.0 | 45 | 2.2249 | 0.5 | 0.4286 | 0.5 | 0.0001 |
102
+ | No log | 46.0 | 46 | 2.2116 | 0.5 | 0.4286 | 0.5 | 0.0001 |
103
+ | No log | 47.0 | 47 | 2.1979 | 0.5 | 0.4286 | 0.5 | 0.0001 |
104
+ | No log | 48.0 | 48 | 2.2088 | 0.5 | 0.4286 | 0.5 | 0.0001 |
105
+ | No log | 49.0 | 49 | 2.2075 | 0.5 | 0.4286 | 0.5 | 0.0001 |
106
+ | No log | 50.0 | 50 | 2.2067 | 0.5 | 0.4286 | 0.5 | 0.0001 |
107
+ | No log | 51.0 | 51 | 2.2182 | 0.5 | 0.4286 | 0.5 | 0.0001 |
108
+ | No log | 52.0 | 52 | 2.2243 | 0.5 | 0.4286 | 0.5 | 0.0001 |
109
+ | No log | 53.0 | 53 | 2.2344 | 0.5 | 0.4286 | 0.5 | 0.0001 |
110
+ | No log | 54.0 | 54 | 2.2222 | 0.5 | 0.4286 | 0.5 | 1e-05 |
111
+ | No log | 55.0 | 55 | 2.2211 | 0.5 | 0.4286 | 0.5 | 1e-05 |
112
+ | No log | 56.0 | 56 | 2.2072 | 0.5 | 0.4286 | 0.5 | 1e-05 |
113
+ | No log | 57.0 | 57 | 2.2094 | 0.5 | 0.4286 | 0.5 | 1e-05 |
114
+
115
+
116
+ ### Framework versions
117
+
118
+ - Transformers 4.48.0
119
+ - Pytorch 2.6.0+cu118
120
+ - Datasets 3.0.2
121
+ - Tokenizers 0.21.1
all_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 57.0,
3
+ "eval_accuracy": 0.4,
4
+ "eval_f1_macro": 0.23333333333333334,
5
+ "eval_f1_micro": 0.4,
6
+ "eval_loss": 2.8191895484924316,
7
+ "eval_runtime": 0.3171,
8
+ "eval_samples_per_second": 31.535,
9
+ "eval_steps_per_second": 3.153,
10
+ "learning_rate": 1e-05,
11
+ "total_flos": 1.132788066729984e+16,
12
+ "train_loss": 1.0105553342584979,
13
+ "train_runtime": 99.3744,
14
+ "train_samples_per_second": 15.094,
15
+ "train_steps_per_second": 1.509
16
+ }
config.json ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/dinov2-small",
3
+ "apply_layernorm": true,
4
+ "architectures": [
5
+ "Dinov2ForImageClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "drop_path_rate": 0.0,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.0,
11
+ "hidden_size": 384,
12
+ "id2label": {
13
+ "0": "ALGAE",
14
+ "1": "Acr",
15
+ "2": "Acr_Br",
16
+ "3": "Anem",
17
+ "4": "CCA",
18
+ "5": "Ech",
19
+ "6": "Fts",
20
+ "7": "Gal",
21
+ "8": "Gon",
22
+ "9": "H_oval",
23
+ "10": "H_uni",
24
+ "11": "Mtp",
25
+ "12": "P",
26
+ "13": "Poc",
27
+ "14": "Por",
28
+ "15": "R",
29
+ "16": "RDC",
30
+ "17": "S",
31
+ "18": "SG",
32
+ "19": "Sarg",
33
+ "20": "Ser",
34
+ "21": "Slt",
35
+ "22": "Sp",
36
+ "23": "Turf"
37
+ },
38
+ "image_size": 224,
39
+ "initializer_range": 0.02,
40
+ "label2id": {
41
+ "ALGAE": 0,
42
+ "Acr": 1,
43
+ "Acr_Br": 2,
44
+ "Anem": 3,
45
+ "CCA": 4,
46
+ "Ech": 5,
47
+ "Fts": 6,
48
+ "Gal": 7,
49
+ "Gon": 8,
50
+ "H_oval": 9,
51
+ "H_uni": 10,
52
+ "Mtp": 11,
53
+ "P": 12,
54
+ "Poc": 13,
55
+ "Por": 14,
56
+ "R": 15,
57
+ "RDC": 16,
58
+ "S": 17,
59
+ "SG": 18,
60
+ "Sarg": 19,
61
+ "Ser": 20,
62
+ "Slt": 21,
63
+ "Sp": 22,
64
+ "Turf": 23
65
+ },
66
+ "layer_norm_eps": 1e-06,
67
+ "layerscale_value": 1.0,
68
+ "mlp_ratio": 4,
69
+ "model_type": "dinov2",
70
+ "num_attention_heads": 6,
71
+ "num_channels": 3,
72
+ "num_hidden_layers": 12,
73
+ "out_features": [
74
+ "stage12"
75
+ ],
76
+ "out_indices": [
77
+ 12
78
+ ],
79
+ "patch_size": 14,
80
+ "problem_type": "single_label_classification",
81
+ "qkv_bias": true,
82
+ "reshape_hidden_states": true,
83
+ "stage_names": [
84
+ "stem",
85
+ "stage1",
86
+ "stage2",
87
+ "stage3",
88
+ "stage4",
89
+ "stage5",
90
+ "stage6",
91
+ "stage7",
92
+ "stage8",
93
+ "stage9",
94
+ "stage10",
95
+ "stage11",
96
+ "stage12"
97
+ ],
98
+ "torch_dtype": "float32",
99
+ "transformers_version": "4.48.0",
100
+ "use_swiglu_ffn": false
101
+ }
logs/events.out.tfevents.1746512000.Amoros ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8b507054c6579dbccc00af0add7bdee2f8754f063e228549c3e7faae9df8049
3
+ size 33795
logs/events.out.tfevents.1746512148.Amoros ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65eb708f7bc5997bb66803860785fef8b9619b6afb9c17f4f23a72d1f8d222b9
3
+ size 40
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8b4876a6c262e5d4d0a68a9610f2f0e1c2e1c86f5e6a4f2831e4a46a054777c
3
+ size 88047960
preprocessor_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 224,
4
+ "width": 224
5
+ },
6
+ "do_center_crop": false,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.485,
13
+ 0.456,
14
+ 0.406
15
+ ],
16
+ "image_processor_type": "BitImageProcessor",
17
+ "image_std": [
18
+ 0.229,
19
+ 0.224,
20
+ 0.225
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "height": 224,
26
+ "width": 224
27
+ }
28
+ }
runs/events.out.tfevents.1746511996.Amoros ADDED
File without changes
test_results.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 57.0,
3
+ "eval_accuracy": 0.4,
4
+ "eval_f1_macro": 0.23333333333333334,
5
+ "eval_f1_micro": 0.4,
6
+ "eval_loss": 2.8191895484924316,
7
+ "eval_runtime": 0.3171,
8
+ "eval_samples_per_second": 31.535,
9
+ "eval_steps_per_second": 3.153,
10
+ "learning_rate": 1e-05
11
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 57.0,
3
+ "learning_rate": 1e-05,
4
+ "total_flos": 1.132788066729984e+16,
5
+ "train_loss": 1.0105553342584979,
6
+ "train_runtime": 99.3744,
7
+ "train_samples_per_second": 15.094,
8
+ "train_steps_per_second": 1.509
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.19789457321167,
3
+ "best_model_checkpoint": "models\\DinoAmoros-small-2025_05_06_36794-prova_bs16_freeze_monolabel\\checkpoint-47",
4
+ "epoch": 57.0,
5
+ "eval_steps": 500,
6
+ "global_step": 57,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.0,
14
+ "eval_f1_macro": 0.0,
15
+ "eval_f1_micro": 0.0,
16
+ "eval_loss": 3.198047161102295,
17
+ "eval_runtime": 0.2491,
18
+ "eval_samples_per_second": 40.14,
19
+ "eval_steps_per_second": 4.014,
20
+ "learning_rate": 0.001,
21
+ "step": 1
22
+ },
23
+ {
24
+ "epoch": 2.0,
25
+ "eval_accuracy": 0.0,
26
+ "eval_f1_macro": 0.0,
27
+ "eval_f1_micro": 0.0,
28
+ "eval_loss": 3.131640911102295,
29
+ "eval_runtime": 0.1122,
30
+ "eval_samples_per_second": 89.154,
31
+ "eval_steps_per_second": 8.915,
32
+ "learning_rate": 0.001,
33
+ "step": 2
34
+ },
35
+ {
36
+ "epoch": 3.0,
37
+ "eval_accuracy": 0.0,
38
+ "eval_f1_macro": 0.0,
39
+ "eval_f1_micro": 0.0,
40
+ "eval_loss": 3.125,
41
+ "eval_runtime": 0.1717,
42
+ "eval_samples_per_second": 58.232,
43
+ "eval_steps_per_second": 5.823,
44
+ "learning_rate": 0.001,
45
+ "step": 3
46
+ },
47
+ {
48
+ "epoch": 4.0,
49
+ "eval_accuracy": 0.0,
50
+ "eval_f1_macro": 0.0,
51
+ "eval_f1_micro": 0.0,
52
+ "eval_loss": 3.1275391578674316,
53
+ "eval_runtime": 0.1416,
54
+ "eval_samples_per_second": 70.64,
55
+ "eval_steps_per_second": 7.064,
56
+ "learning_rate": 0.001,
57
+ "step": 4
58
+ },
59
+ {
60
+ "epoch": 5.0,
61
+ "eval_accuracy": 0.1,
62
+ "eval_f1_macro": 0.05714285714285715,
63
+ "eval_f1_micro": 0.1,
64
+ "eval_loss": 3.067577838897705,
65
+ "eval_runtime": 0.1405,
66
+ "eval_samples_per_second": 71.164,
67
+ "eval_steps_per_second": 7.116,
68
+ "learning_rate": 0.001,
69
+ "step": 5
70
+ },
71
+ {
72
+ "epoch": 6.0,
73
+ "eval_accuracy": 0.1,
74
+ "eval_f1_macro": 0.05714285714285715,
75
+ "eval_f1_micro": 0.1,
76
+ "eval_loss": 3.065624713897705,
77
+ "eval_runtime": 0.173,
78
+ "eval_samples_per_second": 57.811,
79
+ "eval_steps_per_second": 5.781,
80
+ "learning_rate": 0.001,
81
+ "step": 6
82
+ },
83
+ {
84
+ "epoch": 7.0,
85
+ "eval_accuracy": 0.1,
86
+ "eval_f1_macro": 0.05,
87
+ "eval_f1_micro": 0.1,
88
+ "eval_loss": 3.0042967796325684,
89
+ "eval_runtime": 0.1325,
90
+ "eval_samples_per_second": 75.457,
91
+ "eval_steps_per_second": 7.546,
92
+ "learning_rate": 0.001,
93
+ "step": 7
94
+ },
95
+ {
96
+ "epoch": 8.0,
97
+ "eval_accuracy": 0.3,
98
+ "eval_f1_macro": 0.15306122448979592,
99
+ "eval_f1_micro": 0.3,
100
+ "eval_loss": 2.9486327171325684,
101
+ "eval_runtime": 0.1302,
102
+ "eval_samples_per_second": 76.779,
103
+ "eval_steps_per_second": 7.678,
104
+ "learning_rate": 0.001,
105
+ "step": 8
106
+ },
107
+ {
108
+ "epoch": 9.0,
109
+ "eval_accuracy": 0.4,
110
+ "eval_f1_macro": 0.2816326530612245,
111
+ "eval_f1_micro": 0.4,
112
+ "eval_loss": 2.8736329078674316,
113
+ "eval_runtime": 0.1384,
114
+ "eval_samples_per_second": 72.254,
115
+ "eval_steps_per_second": 7.225,
116
+ "learning_rate": 0.001,
117
+ "step": 9
118
+ },
119
+ {
120
+ "epoch": 10.0,
121
+ "eval_accuracy": 0.4,
122
+ "eval_f1_macro": 0.2816326530612245,
123
+ "eval_f1_micro": 0.4,
124
+ "eval_loss": 2.8121094703674316,
125
+ "eval_runtime": 0.1367,
126
+ "eval_samples_per_second": 73.148,
127
+ "eval_steps_per_second": 7.315,
128
+ "learning_rate": 0.001,
129
+ "step": 10
130
+ },
131
+ {
132
+ "epoch": 11.0,
133
+ "eval_accuracy": 0.6,
134
+ "eval_f1_macro": 0.40277777777777773,
135
+ "eval_f1_micro": 0.6,
136
+ "eval_loss": 2.754101276397705,
137
+ "eval_runtime": 0.164,
138
+ "eval_samples_per_second": 60.964,
139
+ "eval_steps_per_second": 6.096,
140
+ "learning_rate": 0.001,
141
+ "step": 11
142
+ },
143
+ {
144
+ "epoch": 12.0,
145
+ "eval_accuracy": 0.6,
146
+ "eval_f1_macro": 0.40277777777777773,
147
+ "eval_f1_micro": 0.6,
148
+ "eval_loss": 2.6966795921325684,
149
+ "eval_runtime": 0.1396,
150
+ "eval_samples_per_second": 71.647,
151
+ "eval_steps_per_second": 7.165,
152
+ "learning_rate": 0.001,
153
+ "step": 12
154
+ },
155
+ {
156
+ "epoch": 13.0,
157
+ "eval_accuracy": 0.6,
158
+ "eval_f1_macro": 0.484126984126984,
159
+ "eval_f1_micro": 0.6,
160
+ "eval_loss": 2.6595702171325684,
161
+ "eval_runtime": 0.1263,
162
+ "eval_samples_per_second": 79.178,
163
+ "eval_steps_per_second": 7.918,
164
+ "learning_rate": 0.001,
165
+ "step": 13
166
+ },
167
+ {
168
+ "epoch": 14.0,
169
+ "eval_accuracy": 0.5,
170
+ "eval_f1_macro": 0.35714285714285715,
171
+ "eval_f1_micro": 0.5,
172
+ "eval_loss": 2.6483397483825684,
173
+ "eval_runtime": 0.1255,
174
+ "eval_samples_per_second": 79.679,
175
+ "eval_steps_per_second": 7.968,
176
+ "learning_rate": 0.001,
177
+ "step": 14
178
+ },
179
+ {
180
+ "epoch": 15.0,
181
+ "eval_accuracy": 0.5,
182
+ "eval_f1_macro": 0.35714285714285715,
183
+ "eval_f1_micro": 0.5,
184
+ "eval_loss": 2.6143555641174316,
185
+ "eval_runtime": 0.1245,
186
+ "eval_samples_per_second": 80.34,
187
+ "eval_steps_per_second": 8.034,
188
+ "learning_rate": 0.001,
189
+ "step": 15
190
+ },
191
+ {
192
+ "epoch": 16.0,
193
+ "eval_accuracy": 0.5,
194
+ "eval_f1_macro": 0.35714285714285715,
195
+ "eval_f1_micro": 0.5,
196
+ "eval_loss": 2.5909180641174316,
197
+ "eval_runtime": 0.141,
198
+ "eval_samples_per_second": 70.936,
199
+ "eval_steps_per_second": 7.094,
200
+ "learning_rate": 0.001,
201
+ "step": 16
202
+ },
203
+ {
204
+ "epoch": 17.0,
205
+ "eval_accuracy": 0.5,
206
+ "eval_f1_macro": 0.42857142857142855,
207
+ "eval_f1_micro": 0.5,
208
+ "eval_loss": 2.548144817352295,
209
+ "eval_runtime": 0.1409,
210
+ "eval_samples_per_second": 70.958,
211
+ "eval_steps_per_second": 7.096,
212
+ "learning_rate": 0.001,
213
+ "step": 17
214
+ },
215
+ {
216
+ "epoch": 18.0,
217
+ "eval_accuracy": 0.5,
218
+ "eval_f1_macro": 0.3619047619047619,
219
+ "eval_f1_micro": 0.5,
220
+ "eval_loss": 2.5125975608825684,
221
+ "eval_runtime": 0.1285,
222
+ "eval_samples_per_second": 77.801,
223
+ "eval_steps_per_second": 7.78,
224
+ "learning_rate": 0.001,
225
+ "step": 18
226
+ },
227
+ {
228
+ "epoch": 19.0,
229
+ "eval_accuracy": 0.5,
230
+ "eval_f1_macro": 0.42857142857142855,
231
+ "eval_f1_micro": 0.5,
232
+ "eval_loss": 2.4791016578674316,
233
+ "eval_runtime": 0.1252,
234
+ "eval_samples_per_second": 79.893,
235
+ "eval_steps_per_second": 7.989,
236
+ "learning_rate": 0.001,
237
+ "step": 19
238
+ },
239
+ {
240
+ "epoch": 20.0,
241
+ "eval_accuracy": 0.5,
242
+ "eval_f1_macro": 0.42857142857142855,
243
+ "eval_f1_micro": 0.5,
244
+ "eval_loss": 2.473827838897705,
245
+ "eval_runtime": 0.1649,
246
+ "eval_samples_per_second": 60.639,
247
+ "eval_steps_per_second": 6.064,
248
+ "learning_rate": 0.001,
249
+ "step": 20
250
+ },
251
+ {
252
+ "epoch": 21.0,
253
+ "eval_accuracy": 0.5,
254
+ "eval_f1_macro": 0.42857142857142855,
255
+ "eval_f1_micro": 0.5,
256
+ "eval_loss": 2.4310059547424316,
257
+ "eval_runtime": 0.1318,
258
+ "eval_samples_per_second": 75.857,
259
+ "eval_steps_per_second": 7.586,
260
+ "learning_rate": 0.001,
261
+ "step": 21
262
+ },
263
+ {
264
+ "epoch": 22.0,
265
+ "eval_accuracy": 0.5,
266
+ "eval_f1_macro": 0.42857142857142855,
267
+ "eval_f1_micro": 0.5,
268
+ "eval_loss": 2.403027057647705,
269
+ "eval_runtime": 0.1782,
270
+ "eval_samples_per_second": 56.119,
271
+ "eval_steps_per_second": 5.612,
272
+ "learning_rate": 0.001,
273
+ "step": 22
274
+ },
275
+ {
276
+ "epoch": 23.0,
277
+ "eval_accuracy": 0.5,
278
+ "eval_f1_macro": 0.42857142857142855,
279
+ "eval_f1_micro": 0.5,
280
+ "eval_loss": 2.400097370147705,
281
+ "eval_runtime": 0.1295,
282
+ "eval_samples_per_second": 77.208,
283
+ "eval_steps_per_second": 7.721,
284
+ "learning_rate": 0.001,
285
+ "step": 23
286
+ },
287
+ {
288
+ "epoch": 24.0,
289
+ "eval_accuracy": 0.5,
290
+ "eval_f1_macro": 0.42857142857142855,
291
+ "eval_f1_micro": 0.5,
292
+ "eval_loss": 2.3993163108825684,
293
+ "eval_runtime": 0.1217,
294
+ "eval_samples_per_second": 82.203,
295
+ "eval_steps_per_second": 8.22,
296
+ "learning_rate": 0.001,
297
+ "step": 24
298
+ },
299
+ {
300
+ "epoch": 25.0,
301
+ "eval_accuracy": 0.5,
302
+ "eval_f1_macro": 0.42857142857142855,
303
+ "eval_f1_micro": 0.5,
304
+ "eval_loss": 2.392773151397705,
305
+ "eval_runtime": 0.1217,
306
+ "eval_samples_per_second": 82.192,
307
+ "eval_steps_per_second": 8.219,
308
+ "learning_rate": 0.001,
309
+ "step": 25
310
+ },
311
+ {
312
+ "epoch": 26.0,
313
+ "eval_accuracy": 0.5,
314
+ "eval_f1_macro": 0.42857142857142855,
315
+ "eval_f1_micro": 0.5,
316
+ "eval_loss": 2.3896484375,
317
+ "eval_runtime": 0.1371,
318
+ "eval_samples_per_second": 72.942,
319
+ "eval_steps_per_second": 7.294,
320
+ "learning_rate": 0.001,
321
+ "step": 26
322
+ },
323
+ {
324
+ "epoch": 27.0,
325
+ "eval_accuracy": 0.5,
326
+ "eval_f1_macro": 0.42857142857142855,
327
+ "eval_f1_micro": 0.5,
328
+ "eval_loss": 2.390869140625,
329
+ "eval_runtime": 0.1358,
330
+ "eval_samples_per_second": 73.642,
331
+ "eval_steps_per_second": 7.364,
332
+ "learning_rate": 0.001,
333
+ "step": 27
334
+ },
335
+ {
336
+ "epoch": 28.0,
337
+ "eval_accuracy": 0.5,
338
+ "eval_f1_macro": 0.42857142857142855,
339
+ "eval_f1_micro": 0.5,
340
+ "eval_loss": 2.377246379852295,
341
+ "eval_runtime": 0.1254,
342
+ "eval_samples_per_second": 79.747,
343
+ "eval_steps_per_second": 7.975,
344
+ "learning_rate": 0.001,
345
+ "step": 28
346
+ },
347
+ {
348
+ "epoch": 29.0,
349
+ "eval_accuracy": 0.5,
350
+ "eval_f1_macro": 0.42857142857142855,
351
+ "eval_f1_micro": 0.5,
352
+ "eval_loss": 2.3432374000549316,
353
+ "eval_runtime": 0.1266,
354
+ "eval_samples_per_second": 78.973,
355
+ "eval_steps_per_second": 7.897,
356
+ "learning_rate": 0.001,
357
+ "step": 29
358
+ },
359
+ {
360
+ "epoch": 30.0,
361
+ "eval_accuracy": 0.5,
362
+ "eval_f1_macro": 0.42857142857142855,
363
+ "eval_f1_micro": 0.5,
364
+ "eval_loss": 2.3191895484924316,
365
+ "eval_runtime": 0.1195,
366
+ "eval_samples_per_second": 83.69,
367
+ "eval_steps_per_second": 8.369,
368
+ "learning_rate": 0.001,
369
+ "step": 30
370
+ },
371
+ {
372
+ "epoch": 31.0,
373
+ "eval_accuracy": 0.6,
374
+ "eval_f1_macro": 0.5476190476190477,
375
+ "eval_f1_micro": 0.6,
376
+ "eval_loss": 2.308764934539795,
377
+ "eval_runtime": 0.1395,
378
+ "eval_samples_per_second": 71.709,
379
+ "eval_steps_per_second": 7.171,
380
+ "learning_rate": 0.001,
381
+ "step": 31
382
+ },
383
+ {
384
+ "epoch": 32.0,
385
+ "eval_accuracy": 0.6,
386
+ "eval_f1_macro": 0.5476190476190477,
387
+ "eval_f1_micro": 0.6,
388
+ "eval_loss": 2.3003783226013184,
389
+ "eval_runtime": 0.1233,
390
+ "eval_samples_per_second": 81.112,
391
+ "eval_steps_per_second": 8.111,
392
+ "learning_rate": 0.001,
393
+ "step": 32
394
+ },
395
+ {
396
+ "epoch": 33.0,
397
+ "eval_accuracy": 0.6,
398
+ "eval_f1_macro": 0.5476190476190477,
399
+ "eval_f1_micro": 0.6,
400
+ "eval_loss": 2.304394245147705,
401
+ "eval_runtime": 0.1231,
402
+ "eval_samples_per_second": 81.231,
403
+ "eval_steps_per_second": 8.123,
404
+ "learning_rate": 0.001,
405
+ "step": 33
406
+ },
407
+ {
408
+ "epoch": 34.0,
409
+ "eval_accuracy": 0.6,
410
+ "eval_f1_macro": 0.5476190476190477,
411
+ "eval_f1_micro": 0.6,
412
+ "eval_loss": 2.297924518585205,
413
+ "eval_runtime": 0.136,
414
+ "eval_samples_per_second": 73.545,
415
+ "eval_steps_per_second": 7.355,
416
+ "learning_rate": 0.001,
417
+ "step": 34
418
+ },
419
+ {
420
+ "epoch": 35.0,
421
+ "eval_accuracy": 0.6,
422
+ "eval_f1_macro": 0.5476190476190477,
423
+ "eval_f1_micro": 0.6,
424
+ "eval_loss": 2.304821491241455,
425
+ "eval_runtime": 0.1332,
426
+ "eval_samples_per_second": 75.078,
427
+ "eval_steps_per_second": 7.508,
428
+ "learning_rate": 0.001,
429
+ "step": 35
430
+ },
431
+ {
432
+ "epoch": 36.0,
433
+ "eval_accuracy": 0.6,
434
+ "eval_f1_macro": 0.5476190476190477,
435
+ "eval_f1_micro": 0.6,
436
+ "eval_loss": 2.2987122535705566,
437
+ "eval_runtime": 0.1444,
438
+ "eval_samples_per_second": 69.246,
439
+ "eval_steps_per_second": 6.925,
440
+ "learning_rate": 0.001,
441
+ "step": 36
442
+ },
443
+ {
444
+ "epoch": 37.0,
445
+ "eval_accuracy": 0.6,
446
+ "eval_f1_macro": 0.5476190476190477,
447
+ "eval_f1_micro": 0.6,
448
+ "eval_loss": 2.299713134765625,
449
+ "eval_runtime": 0.175,
450
+ "eval_samples_per_second": 57.129,
451
+ "eval_steps_per_second": 5.713,
452
+ "learning_rate": 0.001,
453
+ "step": 37
454
+ },
455
+ {
456
+ "epoch": 38.0,
457
+ "eval_accuracy": 0.6,
458
+ "eval_f1_macro": 0.5476190476190477,
459
+ "eval_f1_micro": 0.6,
460
+ "eval_loss": 2.319528102874756,
461
+ "eval_runtime": 0.1336,
462
+ "eval_samples_per_second": 74.854,
463
+ "eval_steps_per_second": 7.485,
464
+ "learning_rate": 0.001,
465
+ "step": 38
466
+ },
467
+ {
468
+ "epoch": 39.0,
469
+ "eval_accuracy": 0.5,
470
+ "eval_f1_macro": 0.42857142857142855,
471
+ "eval_f1_micro": 0.5,
472
+ "eval_loss": 2.3158326148986816,
473
+ "eval_runtime": 0.1144,
474
+ "eval_samples_per_second": 87.426,
475
+ "eval_steps_per_second": 8.743,
476
+ "learning_rate": 0.001,
477
+ "step": 39
478
+ },
479
+ {
480
+ "epoch": 40.0,
481
+ "eval_accuracy": 0.5,
482
+ "eval_f1_macro": 0.42857142857142855,
483
+ "eval_f1_micro": 0.5,
484
+ "eval_loss": 2.3082613945007324,
485
+ "eval_runtime": 0.144,
486
+ "eval_samples_per_second": 69.427,
487
+ "eval_steps_per_second": 6.943,
488
+ "learning_rate": 0.001,
489
+ "step": 40
490
+ },
491
+ {
492
+ "epoch": 41.0,
493
+ "eval_accuracy": 0.5,
494
+ "eval_f1_macro": 0.42857142857142855,
495
+ "eval_f1_micro": 0.5,
496
+ "eval_loss": 2.28303861618042,
497
+ "eval_runtime": 0.1397,
498
+ "eval_samples_per_second": 71.6,
499
+ "eval_steps_per_second": 7.16,
500
+ "learning_rate": 0.0001,
501
+ "step": 41
502
+ },
503
+ {
504
+ "epoch": 42.0,
505
+ "eval_accuracy": 0.5,
506
+ "eval_f1_macro": 0.42857142857142855,
507
+ "eval_f1_micro": 0.5,
508
+ "eval_loss": 2.2719388008117676,
509
+ "eval_runtime": 0.1221,
510
+ "eval_samples_per_second": 81.871,
511
+ "eval_steps_per_second": 8.187,
512
+ "learning_rate": 0.0001,
513
+ "step": 42
514
+ },
515
+ {
516
+ "epoch": 43.0,
517
+ "eval_accuracy": 0.5,
518
+ "eval_f1_macro": 0.42857142857142855,
519
+ "eval_f1_micro": 0.5,
520
+ "eval_loss": 2.240405559539795,
521
+ "eval_runtime": 0.1323,
522
+ "eval_samples_per_second": 75.566,
523
+ "eval_steps_per_second": 7.557,
524
+ "learning_rate": 0.0001,
525
+ "step": 43
526
+ },
527
+ {
528
+ "epoch": 44.0,
529
+ "eval_accuracy": 0.5,
530
+ "eval_f1_macro": 0.42857142857142855,
531
+ "eval_f1_micro": 0.5,
532
+ "eval_loss": 2.2438597679138184,
533
+ "eval_runtime": 0.1759,
534
+ "eval_samples_per_second": 56.864,
535
+ "eval_steps_per_second": 5.686,
536
+ "learning_rate": 0.0001,
537
+ "step": 44
538
+ },
539
+ {
540
+ "epoch": 45.0,
541
+ "eval_accuracy": 0.5,
542
+ "eval_f1_macro": 0.42857142857142855,
543
+ "eval_f1_micro": 0.5,
544
+ "eval_loss": 2.22489595413208,
545
+ "eval_runtime": 0.1278,
546
+ "eval_samples_per_second": 78.272,
547
+ "eval_steps_per_second": 7.827,
548
+ "learning_rate": 0.0001,
549
+ "step": 45
550
+ },
551
+ {
552
+ "epoch": 46.0,
553
+ "eval_accuracy": 0.5,
554
+ "eval_f1_macro": 0.42857142857142855,
555
+ "eval_f1_micro": 0.5,
556
+ "eval_loss": 2.21156644821167,
557
+ "eval_runtime": 0.1529,
558
+ "eval_samples_per_second": 65.404,
559
+ "eval_steps_per_second": 6.54,
560
+ "learning_rate": 0.0001,
561
+ "step": 46
562
+ },
563
+ {
564
+ "epoch": 47.0,
565
+ "eval_accuracy": 0.5,
566
+ "eval_f1_macro": 0.42857142857142855,
567
+ "eval_f1_micro": 0.5,
568
+ "eval_loss": 2.19789457321167,
569
+ "eval_runtime": 0.1469,
570
+ "eval_samples_per_second": 68.081,
571
+ "eval_steps_per_second": 6.808,
572
+ "learning_rate": 0.0001,
573
+ "step": 47
574
+ },
575
+ {
576
+ "epoch": 48.0,
577
+ "eval_accuracy": 0.5,
578
+ "eval_f1_macro": 0.42857142857142855,
579
+ "eval_f1_micro": 0.5,
580
+ "eval_loss": 2.208752155303955,
581
+ "eval_runtime": 0.1318,
582
+ "eval_samples_per_second": 75.849,
583
+ "eval_steps_per_second": 7.585,
584
+ "learning_rate": 0.0001,
585
+ "step": 48
586
+ },
587
+ {
588
+ "epoch": 49.0,
589
+ "eval_accuracy": 0.5,
590
+ "eval_f1_macro": 0.42857142857142855,
591
+ "eval_f1_micro": 0.5,
592
+ "eval_loss": 2.2074952125549316,
593
+ "eval_runtime": 0.1432,
594
+ "eval_samples_per_second": 69.811,
595
+ "eval_steps_per_second": 6.981,
596
+ "learning_rate": 0.0001,
597
+ "step": 49
598
+ },
599
+ {
600
+ "epoch": 50.0,
601
+ "eval_accuracy": 0.5,
602
+ "eval_f1_macro": 0.42857142857142855,
603
+ "eval_f1_micro": 0.5,
604
+ "eval_loss": 2.2066588401794434,
605
+ "eval_runtime": 0.1397,
606
+ "eval_samples_per_second": 71.588,
607
+ "eval_steps_per_second": 7.159,
608
+ "learning_rate": 0.0001,
609
+ "step": 50
610
+ },
611
+ {
612
+ "epoch": 51.0,
613
+ "eval_accuracy": 0.5,
614
+ "eval_f1_macro": 0.42857142857142855,
615
+ "eval_f1_micro": 0.5,
616
+ "eval_loss": 2.218231201171875,
617
+ "eval_runtime": 0.1212,
618
+ "eval_samples_per_second": 82.531,
619
+ "eval_steps_per_second": 8.253,
620
+ "learning_rate": 0.0001,
621
+ "step": 51
622
+ },
623
+ {
624
+ "epoch": 52.0,
625
+ "eval_accuracy": 0.5,
626
+ "eval_f1_macro": 0.42857142857142855,
627
+ "eval_f1_micro": 0.5,
628
+ "eval_loss": 2.2242674827575684,
629
+ "eval_runtime": 0.17,
630
+ "eval_samples_per_second": 58.815,
631
+ "eval_steps_per_second": 5.881,
632
+ "learning_rate": 0.0001,
633
+ "step": 52
634
+ },
635
+ {
636
+ "epoch": 53.0,
637
+ "eval_accuracy": 0.5,
638
+ "eval_f1_macro": 0.42857142857142855,
639
+ "eval_f1_micro": 0.5,
640
+ "eval_loss": 2.23439359664917,
641
+ "eval_runtime": 0.1367,
642
+ "eval_samples_per_second": 73.138,
643
+ "eval_steps_per_second": 7.314,
644
+ "learning_rate": 0.0001,
645
+ "step": 53
646
+ },
647
+ {
648
+ "epoch": 54.0,
649
+ "eval_accuracy": 0.5,
650
+ "eval_f1_macro": 0.42857142857142855,
651
+ "eval_f1_micro": 0.5,
652
+ "eval_loss": 2.2221617698669434,
653
+ "eval_runtime": 0.1651,
654
+ "eval_samples_per_second": 60.581,
655
+ "eval_steps_per_second": 6.058,
656
+ "learning_rate": 1e-05,
657
+ "step": 54
658
+ },
659
+ {
660
+ "epoch": 55.0,
661
+ "eval_accuracy": 0.5,
662
+ "eval_f1_macro": 0.42857142857142855,
663
+ "eval_f1_micro": 0.5,
664
+ "eval_loss": 2.2211365699768066,
665
+ "eval_runtime": 0.1366,
666
+ "eval_samples_per_second": 73.229,
667
+ "eval_steps_per_second": 7.323,
668
+ "learning_rate": 1e-05,
669
+ "step": 55
670
+ },
671
+ {
672
+ "epoch": 56.0,
673
+ "eval_accuracy": 0.5,
674
+ "eval_f1_macro": 0.42857142857142855,
675
+ "eval_f1_micro": 0.5,
676
+ "eval_loss": 2.207244873046875,
677
+ "eval_runtime": 0.1238,
678
+ "eval_samples_per_second": 80.78,
679
+ "eval_steps_per_second": 8.078,
680
+ "learning_rate": 1e-05,
681
+ "step": 56
682
+ },
683
+ {
684
+ "epoch": 57.0,
685
+ "eval_accuracy": 0.5,
686
+ "eval_f1_macro": 0.42857142857142855,
687
+ "eval_f1_micro": 0.5,
688
+ "eval_loss": 2.2094483375549316,
689
+ "eval_runtime": 0.1349,
690
+ "eval_samples_per_second": 74.14,
691
+ "eval_steps_per_second": 7.414,
692
+ "learning_rate": 1e-05,
693
+ "step": 57
694
+ },
695
+ {
696
+ "epoch": 57.0,
697
+ "learning_rate": 1e-05,
698
+ "step": 57,
699
+ "total_flos": 1.132788066729984e+16,
700
+ "train_loss": 1.0105553342584979,
701
+ "train_runtime": 99.3744,
702
+ "train_samples_per_second": 15.094,
703
+ "train_steps_per_second": 1.509
704
+ }
705
+ ],
706
+ "logging_steps": 500,
707
+ "max_steps": 150,
708
+ "num_input_tokens_seen": 0,
709
+ "num_train_epochs": 150,
710
+ "save_steps": 500,
711
+ "stateful_callbacks": {
712
+ "EarlyStoppingCallback": {
713
+ "args": {
714
+ "early_stopping_patience": 10,
715
+ "early_stopping_threshold": 0.0
716
+ },
717
+ "attributes": {
718
+ "early_stopping_patience_counter": 10
719
+ }
720
+ },
721
+ "TrainerControl": {
722
+ "args": {
723
+ "should_epoch_stop": false,
724
+ "should_evaluate": false,
725
+ "should_log": false,
726
+ "should_save": true,
727
+ "should_training_stop": true
728
+ },
729
+ "attributes": {}
730
+ }
731
+ },
732
+ "total_flos": 1.132788066729984e+16,
733
+ "train_batch_size": 16,
734
+ "trial_name": null,
735
+ "trial_params": null
736
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93911835f2fcc78a8008b53309a0eaf76340cffa8f4a9dfdff7297059bad1270
3
+ size 5432
transforms.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train_transforms": [
3
+ {
4
+ "operation": "PreProcess"
5
+ },
6
+ {
7
+ "operation": "Resize",
8
+ "probability": 1.0
9
+ },
10
+ {
11
+ "operation": "RandomHorizontalFlip",
12
+ "probability": 0.25
13
+ },
14
+ {
15
+ "operation": "RandomVerticalFlip",
16
+ "probability": 0.25
17
+ },
18
+ {
19
+ "operation": "ColorJiggle",
20
+ "probability": 0.25
21
+ },
22
+ {
23
+ "operation": "RandomPerspective",
24
+ "probability": 0.25
25
+ },
26
+ {
27
+ "operation": "Normalize",
28
+ "probability": 1.0
29
+ }
30
+ ],
31
+ "val_transforms": [
32
+ {
33
+ "operation": "PreProcess"
34
+ },
35
+ {
36
+ "operation": "Resize",
37
+ "probability": 1.0
38
+ },
39
+ {
40
+ "operation": "Normalize",
41
+ "probability": 1.0
42
+ }
43
+ ]
44
+ }