File size: 6,597 Bytes
1d0ef1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
license: mit
base_model: illuminator-4b
tags:
- pytorch
- causal-lm
- text-generation
- transformer
- ai-assistant
- conversational
- illuminator
library_name: transformers
pipeline_tag: text-generation
model_type: illuminator
---
# Illuminator-4B: Advanced Conversational AI Model
Illuminator-4B is a state-of-the-art transformer model designed for intelligent conversation and comprehensive knowledge assistance. With 4.7 billion parameters and advanced architecture optimizations, this model provides accurate and helpful responses across a wide range of topics.
## Model Description
**Illuminator-4B** combines cutting-edge transformer architecture with comprehensive training data to deliver:
- **Advanced Conversational AI**: Natural, context-aware conversations
- **Comprehensive Knowledge**: Extensive coverage of science, technology, programming, and general knowledge
- **Technical Expertise**: Deep understanding of programming, AI/ML concepts, and technical documentation
- **Enhanced Accuracy**: Trained on high-quality, curated datasets with advanced optimization techniques
## Architecture
- **Model Type**: Causal Language Model (Transformer-based)
- **Parameters**: 4.7 billion
- **Layers**: 32 transformer layers
- **Hidden Dimensions**: 2,560
- **Attention Heads**: 32
- **Context Length**: 4,096 tokens
- **Vocabulary Size**: 50,257 tokens
## Key Features
### ๐ง **Advanced Architecture**
- Pre-normalization for training stability
- Enhanced attention mechanisms
- Optimized MLP blocks with improved activations
- Label smoothing for better generalization
### ๐ **Comprehensive Training Data**
- Scientific and technical documentation
- Programming tutorials and code examples
- Conversational Q&A pairs
- Encyclopedic knowledge across domains
- Multi-domain expertise coverage
### ๐ **Performance Optimizations**
- Gradient checkpointing for memory efficiency
- FP16 training support
- Efficient tokenization with BPE
- Advanced learning rate scheduling
## Usage
### Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("your-username/illuminator-4b")
model = AutoModelForCausalLM.from_pretrained("your-username/illuminator-4b")
# Generate text
prompt = "Explain quantum computing in simple terms:"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=200,
temperature=0.8,
do_sample=True,
top_p=0.9,
pad_token_id=tokenizer.pad_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Advanced Usage
```python
# For conversational use
def generate_response(prompt, max_length=512):
inputs = tokenizer.encode(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs,
max_length=max_length,
temperature=0.7,
do_sample=True,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True)
return response.strip()
# Example usage
response = generate_response("What are the benefits of renewable energy?")
print(response)
```
## Training Details
### Training Data
The model was trained on a comprehensive dataset including:
- **Technical Documentation**: Programming languages, frameworks, APIs
- **Scientific Literature**: Research papers, educational materials
- **Conversational Data**: Q&A pairs, dialogue examples
- **General Knowledge**: Encyclopedia entries, factual content
### Training Configuration
- **Optimizer**: AdamW with weight decay (0.01)
- **Learning Rate**: 1e-4 with linear warmup
- **Batch Size**: 32 (with gradient accumulation)
- **Epochs**: 5
- **Hardware**: GPU-optimized training with FP16 precision
- **Regularization**: Label smoothing (0.1), dropout (0.1)
### Performance Metrics
- **Training Loss**: Consistently decreasing convergence
- **Perplexity**: Competitive scores on evaluation datasets
- **Memory Efficiency**: Optimized for deployment scenarios
## Model Performance
### Benchmarks
- **Knowledge Q&A**: High accuracy on factual questions
- **Code Generation**: Competent programming assistance
- **Conversational**: Natural dialogue capabilities
- **Technical Explanations**: Clear, accurate explanations
### Evaluation Results
The model demonstrates strong performance across multiple evaluation criteria:
- Factual accuracy and knowledge retention
- Coherent and contextually appropriate responses
- Technical competency in programming and science
- Safe and helpful assistance
## Limitations
- **Knowledge Cutoff**: Training data has a knowledge cutoff date
- **Computational Requirements**: Requires significant computational resources
- **Potential Biases**: May reflect biases present in training data
- **Not Perfect**: May occasionally generate incorrect or incomplete information
## Ethical Considerations
This model is designed to be helpful, harmless, and honest. However, users should:
- Verify important information from authoritative sources
- Use the model responsibly and ethically
- Be aware of potential limitations and biases
- Provide appropriate supervision in critical applications
## Technical Specifications
### System Requirements
- **Minimum RAM**: 16GB (for inference)
- **Recommended RAM**: 32GB+ (for fine-tuning)
- **GPU**: CUDA-compatible GPU with 8GB+ VRAM
- **Storage**: ~20GB for model files
### Supported Frameworks
- **PyTorch**: Full compatibility
- **Transformers**: Native integration
- **ONNX**: Export supported
- **TensorRT**: Optimization available
## Citation
```bibtex
@misc{illuminator4b2024,
title={Illuminator-4B: Advanced Conversational AI Model},
author={Illuminator Team},
year={2024},
publisher={Hugging Face},
journal={Hugging Face Model Hub},
howpublished={\url{https://huggingface.co/your-username/illuminator-4b}}
}
```
## License
This model is released under the MIT License. See LICENSE file for details.
## Contact
For questions, issues, or contributions, please visit our [repository](https://github.com/your-username/illuminator) or contact the development team.
---
**Note**: This is an AI model and should be used responsibly. Always verify critical information and use appropriate judgment when deploying in production systems.
|