iLLuMinator / modeling_illuminator.py
Anipal's picture
Upload 8 files
1d0ef1d verified
raw
history blame
17.8 kB
"""
Hugging Face Compatible Transformer Model
Enhanced accuracy with comprehensive training data
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from typing import Optional, Tuple, Union
import math
import json
class IlluminatorConfig(PretrainedConfig):
"""
Configuration class for Illuminator Transformer model compatible with Hugging Face
"""
model_type = "illuminator"
def __init__(
self,
vocab_size=50257,
n_positions=4096,
n_embd=2560,
n_layer=32,
n_head=32,
n_inner=None,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
scale_attn_weights=True,
use_cache=True,
bos_token_id=50256,
eos_token_id=50256,
pad_token_id=50257,
**kwargs
):
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
**kwargs
)
self.vocab_size = vocab_size
self.n_positions = n_positions
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.n_inner = n_inner if n_inner is not None else 4 * n_embd
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.scale_attn_weights = scale_attn_weights
self.use_cache = use_cache
class IlluminatorAttention(nn.Module):
"""Enhanced multi-head self-attention with improved accuracy"""
def __init__(self, config):
super().__init__()
self.n_head = config.n_head
self.n_embd = config.n_embd
self.head_dim = self.n_embd // self.n_head
assert self.n_embd % self.n_head == 0
# Enhanced projections with better initialization
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=True)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=True)
# Attention and residual dropout
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.scale_attn_weights = config.scale_attn_weights
# Improved positional bias
self.register_buffer(
"bias",
torch.tril(torch.ones(config.n_positions, config.n_positions))
.view(1, 1, config.n_positions, config.n_positions)
)
# Enhanced scaling
self.scale = (1.0 / math.sqrt(self.head_dim)) if config.scale_attn_weights else 1.0
def _split_heads(self, tensor, num_heads, attn_head_size):
"""Split the last dimension into (num_heads, head_size)"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""Merge attn_head_size dim and num_attn_heads dim into hidden_size"""
tensor = tensor.permute(0, 2, 1, 3).contiguous()
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
return tensor.view(new_shape)
def forward(self, hidden_states, attention_mask=None, head_mask=None, use_cache=False, past_key_value=None):
# Enhanced attention computation
query, key, value = self.c_attn(hidden_states).split(self.n_embd, dim=2)
query = self._split_heads(query, self.n_head, self.head_dim)
key = self._split_heads(key, self.n_head, self.head_dim)
value = self._split_heads(value, self.n_head, self.head_dim)
if past_key_value is not None:
past_key, past_value = past_key_value
key = torch.cat([past_key, key], dim=-2)
value = torch.cat([past_value, value], dim=-2)
if use_cache:
present = (key, value)
else:
present = None
# Improved attention computation with numerical stability
attn_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
# Apply causal mask
seq_len = key.size(-2)
if seq_len > self.bias.size(-1):
# Extend bias if sequence is longer
causal_mask = torch.tril(torch.ones(seq_len, seq_len, device=hidden_states.device))
causal_mask = causal_mask.view(1, 1, seq_len, seq_len)
else:
causal_mask = self.bias[:, :, :seq_len, :seq_len]
attn_scores = torch.where(causal_mask, attn_scores, torch.finfo(attn_scores.dtype).min)
# Apply attention mask if provided
if attention_mask is not None:
attn_scores = attn_scores + attention_mask
# Improved softmax with numerical stability
attn_weights = F.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(attn_scores)
attn_weights = self.attn_dropout(attn_weights)
# Apply head mask if provided
if head_mask is not None:
attn_weights = attn_weights * head_mask
# Compute attention output
attn_output = torch.matmul(attn_weights, value)
attn_output = self._merge_heads(attn_output, self.n_head, self.head_dim)
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
return attn_output, present, attn_weights
class IlluminatorMLP(nn.Module):
"""Enhanced MLP block with improved activation and regularization"""
def __init__(self, config):
super().__init__()
n_inner = config.n_inner if hasattr(config, 'n_inner') else 4 * config.n_embd
self.c_fc = nn.Linear(config.n_embd, n_inner)
self.c_proj = nn.Linear(n_inner, config.n_embd)
self.dropout = nn.Dropout(config.resid_pdrop)
# Enhanced activation function
if config.activation_function == "gelu_new":
self.act = self.gelu_new
elif config.activation_function == "swish":
self.act = F.silu
else:
self.act = F.gelu
def gelu_new(self, x):
"""Improved GELU activation"""
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class IlluminatorBlock(nn.Module):
"""Enhanced transformer block with pre-norm and improved residual connections"""
def __init__(self, config):
super().__init__()
# Pre-normalization for better training stability
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.attn = IlluminatorAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
self.mlp = IlluminatorMLP(config)
def forward(self, hidden_states, attention_mask=None, head_mask=None, use_cache=False, past_key_value=None):
# Pre-norm attention
ln_hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
ln_hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
past_key_value=past_key_value
)
attn_output = attn_outputs[0]
present = attn_outputs[1]
# Residual connection
hidden_states = hidden_states + attn_output
# Pre-norm MLP
ln_hidden_states = self.ln_2(hidden_states)
mlp_output = self.mlp(ln_hidden_states)
# Residual connection
hidden_states = hidden_states + mlp_output
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present,)
return outputs
class IlluminatorModel(PreTrainedModel):
"""
Enhanced Illuminator Transformer Model for Hugging Face
Improved accuracy with better architecture and training
"""
config_class = IlluminatorConfig
base_model_prefix = "transformer"
def __init__(self, config):
super().__init__(config)
# Enhanced embeddings
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
self.drop = nn.Dropout(config.embd_pdrop)
# Enhanced transformer blocks
self.h = nn.ModuleList([IlluminatorBlock(config) for _ in range(config.n_layer)])
# Final layer norm for stability
self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
# Initialize weights
self.init_weights()
# Model parallel
self.model_parallel = False
self.device_map = None
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
past_key_values=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# Attention mask
if attention_mask is not None:
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype)
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Head mask
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
# Enhanced embeddings
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
past_key_value=layer_past,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return {
'last_hidden_state': hidden_states,
'past_key_values': presents,
'hidden_states': all_hidden_states,
'attentions': all_self_attentions,
}
class IlluminatorLMHeadModel(PreTrainedModel):
"""Enhanced Language Model with improved accuracy for text generation"""
config_class = IlluminatorConfig
base_model_prefix = "transformer"
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = IlluminatorModel(config)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Tie weights for better parameter efficiency
self.tie_weights()
# Initialize weights
self.init_weights()
# Model parallel
self.model_parallel = False
self.device_map = None
def tie_weights(self):
"""Tie the weights between input and output embeddings"""
self._tie_or_clone_weights(self.lm_head, self.transformer.wte)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
# Only use last token if past is provided
if past_key_values:
input_ids = input_ids[:, -1].unsqueeze(-1)
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": kwargs.get("attention_mask"),
}
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
past_key_values=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,
)
hidden_states = transformer_outputs[0] if not return_dict else transformer_outputs['last_hidden_state']
# Enhanced language modeling head
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Enhanced loss computation with label smoothing
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten for loss computation
shift_logits = shift_logits.view(-1, shift_logits.size(-1))
shift_labels = shift_labels.view(-1)
# Use label smoothing for better training
loss_fct = nn.CrossEntropyLoss(label_smoothing=0.1)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.get('past_key_values'),
hidden_states=transformer_outputs.get('hidden_states'),
attentions=transformer_outputs.get('attentions'),
)