""" Hugging Face Hub Deployment Script Deploy Illuminator model to Hugging Face Model Hub """ import os import json import torch from pathlib import Path from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM from huggingface_hub import HfApi, create_repo, upload_folder import argparse class HuggingFaceDeployer: """Deploy Illuminator model to Hugging Face Hub""" def __init__(self, model_dir="./huggingface_model", repo_name="illuminator-4b"): self.model_dir = Path(model_dir) self.repo_name = repo_name self.api = HfApi() print(f"๐Ÿš€ Initializing Hugging Face deployment for {repo_name}") print(f"๐Ÿ“ Model directory: {self.model_dir}") def validate_model_files(self): """Validate all required model files are present""" print("๐Ÿ” Validating model files...") required_files = [ "config.json", "tokenizer_config.json", "README.md", "modeling_illuminator.py", "tokenization_illuminator.py" ] missing_files = [] for file in required_files: if not (self.model_dir / file).exists(): missing_files.append(file) if missing_files: print(f"โŒ Missing required files: {missing_files}") return False print("โœ… All required model files present") return True def create_model_card(self): """Create or update model card with metadata""" print("๐Ÿ“ Creating model card...") model_card_path = self.model_dir / "README.md" # Read existing README if it exists if model_card_path.exists(): print("โœ… Model card already exists and is comprehensive") return True # If we reach here, something went wrong print("โŒ Model card not found") return False def test_model_loading(self): """Test that the model can be loaded successfully""" print("๐Ÿงช Testing model loading...") try: # Test config loading config_path = self.model_dir / "config.json" with open(config_path) as f: config_dict = json.load(f) print(f"โœ… Config loaded: {config_dict['model_type']}") # Test if our custom classes can be imported import sys sys.path.append(str(self.model_dir)) from modeling_illuminator import IlluminatorLMHeadModel, IlluminatorConfig from tokenization_illuminator import IlluminatorTokenizer print("โœ… Custom model classes imported successfully") # Test basic initialization config = IlluminatorConfig(**config_dict) print(f"โœ… Model configuration created") return True except Exception as e: print(f"โŒ Model loading test failed: {e}") return False def create_repository(self, private=False): """Create repository on Hugging Face Hub""" print(f"๐Ÿ“ฆ Creating repository: {self.repo_name}") try: repo_url = create_repo( repo_id=self.repo_name, private=private, exist_ok=True, repo_type="model" ) print(f"โœ… Repository created/exists: {repo_url}") return repo_url except Exception as e: print(f"โŒ Failed to create repository: {e}") return None def prepare_deployment_files(self): """Prepare additional files for deployment""" print("๐Ÿ”ง Preparing deployment files...") # Create __init__.py for package init_file = self.model_dir / "__init__.py" if not init_file.exists(): init_content = '''""" Illuminator Model Package """ from .modeling_illuminator import IlluminatorLMHeadModel, IlluminatorConfig from .tokenization_illuminator import IlluminatorTokenizer __all__ = ["IlluminatorLMHeadModel", "IlluminatorConfig", "IlluminatorTokenizer"] ''' with open(init_file, "w") as f: f.write(init_content) print("โœ… Created __init__.py") # Create requirements.txt requirements_file = self.model_dir / "requirements.txt" if not requirements_file.exists(): requirements = """torch>=1.9.0 transformers>=4.21.0 numpy>=1.21.0 tokenizers>=0.13.0 """ with open(requirements_file, "w") as f: f.write(requirements) print("โœ… Created requirements.txt") return True def upload_to_hub(self): """Upload model to Hugging Face Hub""" print("๐Ÿš€ Uploading to Hugging Face Hub...") try: upload_folder( folder_path=str(self.model_dir), repo_id=self.repo_name, repo_type="model", commit_message="Upload Illuminator-4B model", ignore_patterns=[ "*.pyc", "__pycache__/", "*.log", ".git/", ".DS_Store" ] ) print(f"โœ… Model uploaded successfully!") print(f"๐ŸŒ Model available at: https://huggingface.co/{self.repo_name}") return True except Exception as e: print(f"โŒ Upload failed: {e}") return False def deploy(self, private=False, test_loading=True): """Main deployment function""" print("๐ŸŽฏ Starting Hugging Face deployment process") print("=" * 60) # Step 1: Validate files if not self.validate_model_files(): print("โŒ Deployment aborted: Missing required files") return False # Step 2: Test model loading (optional) if test_loading and not self.test_model_loading(): print("โš ๏ธ Model loading test failed, but continuing...") # Step 3: Prepare deployment files if not self.prepare_deployment_files(): print("โŒ Deployment aborted: Failed to prepare files") return False # Step 4: Create repository repo_url = self.create_repository(private=private) if not repo_url: print("โŒ Deployment aborted: Failed to create repository") return False # Step 5: Upload to hub if not self.upload_to_hub(): print("โŒ Deployment aborted: Upload failed") return False print("\n๐ŸŽ‰ Deployment Complete!") print("=" * 60) print(f"โœ… Model successfully deployed to: {self.repo_name}") print(f"๐ŸŒ Access your model at: https://huggingface.co/{self.repo_name}") print("\n๐Ÿ“‹ Next steps:") print("1. Test your model on the Hugging Face Hub") print("2. Share your model with the community") print("3. Monitor usage and feedback") return True def create_example_usage_script(): """Create an example usage script""" example_script = '''""" Example usage of Illuminator-4B model """ from transformers import AutoTokenizer, AutoModelForCausalLM import torch def load_illuminator_model(model_name="your-username/illuminator-4b"): """Load the Illuminator model and tokenizer""" print(f"Loading {model_name}...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return model, tokenizer def generate_response(model, tokenizer, prompt, max_length=256): """Generate a response using the model""" inputs = tokenizer.encode(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( inputs, max_length=max_length, temperature=0.8, do_sample=True, top_p=0.9, pad_token_id=tokenizer.pad_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response[len(prompt):].strip() def main(): # Load model model, tokenizer = load_illuminator_model() # Example prompts prompts = [ "What is artificial intelligence?", "Explain quantum computing in simple terms:", "Write a Python function to calculate fibonacci numbers:", "What are the benefits of renewable energy?" ] print("๐Ÿค– Illuminator-4B Model Demo") print("=" * 40) for prompt in prompts: print(f"\\n๐Ÿ’ฌ Prompt: {prompt}") response = generate_response(model, tokenizer, prompt) print(f"๐Ÿค– Response: {response}") print("-" * 40) if __name__ == "__main__": main() ''' with open("example_usage.py", "w") as f: f.write(example_script) print("โœ… Created example_usage.py") def main(): parser = argparse.ArgumentParser(description="Deploy Illuminator model to Hugging Face Hub") parser.add_argument("--repo-name", default="illuminator-4b", help="Repository name on Hugging Face Hub") parser.add_argument("--model-dir", default="./huggingface_model", help="Directory containing model files") parser.add_argument("--private", action="store_true", help="Create private repository") parser.add_argument("--skip-test", action="store_true", help="Skip model loading test") args = parser.parse_args() # Create deployer deployer = HuggingFaceDeployer( model_dir=args.model_dir, repo_name=args.repo_name ) # Deploy model success = deployer.deploy( private=args.private, test_loading=not args.skip_test ) if success: # Create example usage script create_example_usage_script() print("\n๐ŸŽฏ Deployment Summary:") print(f"Repository: {args.repo_name}") print(f"Model Directory: {args.model_dir}") print(f"Private: {args.private}") print("Example usage script created: example_usage.py") return 0 else: print("โŒ Deployment failed!") return 1 if __name__ == "__main__": exit(main())