AnonRes commited on
Commit
41a9fd7
·
verified ·
1 Parent(s): f91afa4

Update CKPT to not allowe weights_only=True loading and add config.json for download tracking

Browse files
Files changed (3) hide show
  1. adaptation_plan.json +10 -10
  2. checkpoint_final.pth +2 -2
  3. config.json +3 -0
adaptation_plan.json CHANGED
@@ -54,8 +54,8 @@
54
  1
55
  ],
56
  "patch_size": [
57
- 64,
58
- 64,
59
  64
60
  ]
61
  }
@@ -79,29 +79,29 @@
79
  {
80
  "type": "Architecture",
81
  "name": "ResEncL",
82
- "bibtex_citations": [
83
- "@inproceedings{isensee2024nnu,\n title={nnu-net revisited: A call for rigorous validation in 3d medical image segmentation},\n author={Isensee, Fabian and Wald, Tassilo and Ulrich, Constantin and Baumgartner, Michael and Roy, Saikat and Maier-Hein, Klaus and Jaeger, Paul F},\n booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},\n pages={488--498},\n year={2024},\n organization={Springer}\n }"
84
  ]
85
  },
86
  {
87
  "type": "Pretraining Method",
88
  "name": "Volume Contrastive",
89
- "bibtex_citations": [
90
- "@inproceedings{wu2024voco,\n title={Voco: A simple-yet-effective volume contrastive learning framework for 3d medical image analysis},\n author={Wu, Linshan and Zhuang, Jiaxin and Chen, Hao},\n booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},\n pages={22873--22882},\n year={2024}\n}"
91
  ]
92
  },
93
  {
94
  "type": "Pre-Training Dataset",
95
  "name": "OpenMind",
96
- "bibtex_citations": [
97
- "@article{wald2024openmind,\n title={An OpenMind for 3D medical vision self-supervised learning},\n author={Wald, Tassilo and Ulrich, Constantin and Suprijadi, Jonathan and Ziegler, Sebastian and Nohel, Michal and Peretzke, Robin and K{\"o}hler, Gregor and Maier-Hein, Klaus H},\n journal={arXiv preprint arXiv:2412.17041},\n year={2024}\n }\n "
98
  ]
99
  },
100
  {
101
  "type": "Framework",
102
  "name": "nnssl",
103
- "bibtex_citations": [
104
- "@article{wald2024revisiting,\n title={Revisiting MAE pre-training for 3D medical image segmentation},\n author={Wald, Tassilo and Ulrich, Constantin and Lukyanenko, Stanislav and Goncharov, Andrei and Paderno, Alberto and Maerkisch, Leander and J{\"a}ger, Paul F and Maier-Hein, Klaus},\n journal={arXiv preprint arXiv:2410.23132},\n year={2024}\n}"
105
  ]
106
  }
107
  ],
 
54
  1
55
  ],
56
  "patch_size": [
57
+ 256,
58
+ 256,
59
  64
60
  ]
61
  }
 
79
  {
80
  "type": "Architecture",
81
  "name": "ResEncL",
82
+ "apa_citations": [
83
+ "Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., & Jaeger, P. F. (2024, October). nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. MICCAI."
84
  ]
85
  },
86
  {
87
  "type": "Pretraining Method",
88
  "name": "Volume Contrastive",
89
+ "apa_citations": [
90
+ "Wu, L., Zhuang, J., & Chen, H. (2024). Voco: A simple-yet-effective volume contrastive learning framework for 3d medical image analysis. CVPR."
91
  ]
92
  },
93
  {
94
  "type": "Pre-Training Dataset",
95
  "name": "OpenMind",
96
+ "apa_citations": [
97
+ "Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024). An OpenMind for 3D medical vision self-supervised learning. arXiv preprint arXiv:2412.17041."
98
  ]
99
  },
100
  {
101
  "type": "Framework",
102
  "name": "nnssl",
103
+ "apa_citations": [
104
+ "Wald, T., Ulrich, C., Lukyanenko, S., Goncharov, A., Paderno, A., Maerkisch, L., ... & Maier-Hein, K. (2024). Revisiting MAE pre-training for 3D medical image segmentation. CVPR."
105
  ]
106
  }
107
  ],
checkpoint_final.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:459e75d8463a0559a5125cbbfb03d3721264e94ef4f366c34dbc2f5857a08638
3
- size 485662624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:932fef808447607c59d38f379022542181b58e3e55a02c768f7ff4f863b343a9
3
+ size 485661600
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "description": "Dummy config to allow tracking HF downloads."
3
+ }