--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_bsample_123 results: [] --- # populism_classifier_bsample_123 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6160 - Accuracy: 0.8602 - 1-f1: 0.1647 - 1-recall: 0.35 - 1-precision: 0.1077 - Balanced Acc: 0.6156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6697 | 1.0 | 11 | 0.5102 | 0.9606 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.754 | 2.0 | 22 | 0.5048 | 0.9429 | 0.0645 | 0.05 | 0.0909 | 0.5148 | | 0.7323 | 3.0 | 33 | 0.7132 | 0.3366 | 0.0965 | 0.9 | 0.0510 | 0.6068 | | 0.6716 | 4.0 | 44 | 0.6160 | 0.8602 | 0.1647 | 0.35 | 0.1077 | 0.6156 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3