--- library_name: transformers license: mit base_model: google-bert/bert-base-german-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model013 results: [] --- # populism_model013 This model is a fine-tuned version of [google-bert/bert-base-german-cased](https://huggingface.co/google-bert/bert-base-german-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4882 - Accuracy: 0.9158 - 1-f1: 0.4333 - 1-recall: 0.4815 - 1-precision: 0.3939 - Balanced Acc: 0.7142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.4617 | 1.0 | 51 | 0.4239 | 0.8936 | 0.4267 | 0.5926 | 0.3333 | 0.7539 | | 0.3418 | 2.0 | 102 | 0.4725 | 0.9183 | 0.4590 | 0.5185 | 0.4118 | 0.7327 | | 0.2711 | 3.0 | 153 | 0.4882 | 0.9158 | 0.4333 | 0.4815 | 0.3939 | 0.7142 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0