--- library_name: transformers license: mit base_model: ai4bharat/indic-bert tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_model014 results: [] --- # populism_model014 This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5646 - Accuracy: 0.9717 - 1-f1: 0.3 - 1-recall: 0.2143 - 1-precision: 0.5 - Balanced Acc: 0.6040 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.403 | 1.0 | 124 | 0.6092 | 0.9706 | 0.1714 | 0.1071 | 0.4286 | 0.5515 | | 0.1578 | 2.0 | 248 | 0.4444 | 0.9737 | 0.4583 | 0.3929 | 0.55 | 0.6917 | | 0.2256 | 3.0 | 372 | 0.5646 | 0.9717 | 0.3 | 0.2143 | 0.5 | 0.6040 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0