--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: populism_model92 results: [] --- # populism_model92 This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5724 - Accuracy: 0.9193 - F1: 0.5015 - Recall: 0.6613 - Precision: 0.4039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3745 | 1.0 | 64 | 0.3523 | 0.8727 | 0.4376 | 0.8065 | 0.3003 | | 0.2958 | 2.0 | 128 | 0.3617 | 0.8668 | 0.4361 | 0.8387 | 0.2946 | | 0.235 | 3.0 | 192 | 0.4251 | 0.8990 | 0.4769 | 0.75 | 0.3496 | | 0.1525 | 4.0 | 256 | 0.6327 | 0.9386 | 0.5079 | 0.5161 | 0.5 | | 0.1012 | 5.0 | 320 | 0.5724 | 0.9193 | 0.5015 | 0.6613 | 0.4039 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0