--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo26_1 results: [] --- # xlmr_immigration_combo26_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Accuracy: 0.9344 - 1-f1: 0.9006 - 1-recall: 0.8919 - 1-precision: 0.9094 - Balanced Acc: 0.9238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2591 | 1.0 | 25 | 0.1775 | 0.9409 | 0.9073 | 0.8687 | 0.9494 | 0.9228 | | 0.2407 | 2.0 | 50 | 0.1862 | 0.9280 | 0.8862 | 0.8417 | 0.9356 | 0.9064 | | 0.1988 | 3.0 | 75 | 0.2140 | 0.9344 | 0.9006 | 0.8919 | 0.9094 | 0.9238 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4