File size: 2,117 Bytes
8ccd202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo27_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo27_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1942
- Accuracy: 0.9357
- 1-f1: 0.8971
- 1-recall: 0.8417
- 1-precision: 0.9604
- Balanced Acc: 0.9122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2311 | 1.0 | 25 | 0.2019 | 0.9280 | 0.8819 | 0.8069 | 0.9721 | 0.8977 |
| 0.2538 | 2.0 | 50 | 0.1837 | 0.9383 | 0.9024 | 0.8571 | 0.9528 | 0.9180 |
| 0.1703 | 3.0 | 75 | 0.1974 | 0.9357 | 0.9016 | 0.8842 | 0.9197 | 0.9228 |
| 0.099 | 4.0 | 100 | 0.1942 | 0.9357 | 0.8971 | 0.8417 | 0.9604 | 0.9122 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|