Apel-sin commited on
Commit
a6a93ad
β€’
1 Parent(s): a19b3f6

add measurement.json

Browse files
Files changed (2) hide show
  1. README.md +97 -0
  2. measurement.json +0 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ ---
5
+ <div align="center">
6
+
7
+ <picture>
8
+ <img src="https://raw.githubusercontent.com/01-ai/Yi/main/assets/img/Yi_logo_icon_light.svg" width="120px">
9
+ </picture>
10
+
11
+ </div>
12
+
13
+ <p align="center">
14
+ <a href="https://github.com/01-ai">πŸ™ GitHub</a> β€’
15
+ <a href="https://discord.gg/hYUwWddeAu">πŸ‘Ύ Discord</a> β€’
16
+ <a href="https://twitter.com/01ai_yi">🐀 Twitter</a> β€’
17
+ <a href="https://github.com/01-ai/Yi-1.5/issues/2">πŸ’¬ WeChat</a>
18
+ <br/>
19
+ <a href="https://arxiv.org/abs/2403.04652">πŸ“ Paper</a> β€’
20
+ <a href="https://01-ai.github.io/">πŸ’ͺ Tech Blog</a> β€’
21
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#faq">πŸ™Œ FAQ</a> β€’
22
+ <a href="https://github.com/01-ai/Yi/tree/main?tab=readme-ov-file#learning-hub">πŸ“— Learning Hub</a>
23
+ </p>
24
+
25
+ # Intro
26
+
27
+ Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
28
+
29
+ Key features:
30
+ - Excelling in long-context understanding with a maximum context length of 128K tokens.
31
+ - Supporting 52 major programming languages:
32
+ ```bash
33
+ 'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
34
+ ```
35
+
36
+ For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
37
+
38
+ <p align="left">
39
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/yi-coder-calculator-demo.gif?raw=true" alt="demo1" width="500"/>
40
+ </p>
41
+
42
+ # Models
43
+
44
+ | Name | Type | Length | Download |
45
+ |--------------------|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
46
+ | Yi-Coder-9B-Chat | Chat | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B-Chat) |
47
+ | Yi-Coder-1.5B-Chat | Chat | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B-Chat) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B-Chat) |
48
+ | Yi-Coder-9B | Base | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-9B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-9B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-9B) |
49
+ | Yi-Coder-1.5B | Base | 128K | [πŸ€— Hugging Face](https://huggingface.co/01-ai/Yi-Coder-1.5B) β€’ [πŸ€– ModelScope](https://www.modelscope.cn/models/01ai/Yi-Coder-1.5B) β€’ [🟣 wisemodel](https://wisemodel.cn/models/01.AI/Yi-Coder-1.5B) |
50
+ | |
51
+
52
+ # Benchmarks
53
+
54
+ As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.
55
+
56
+ <p align="left">
57
+ <img src="https://github.com/01-ai/Yi/blob/main/assets/img/coder/bench1.webp?raw=true" alt="bench1" width="1000"/>
58
+ </p>
59
+
60
+ # Quick Start
61
+
62
+ You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:
63
+ ```python
64
+ from transformers import AutoTokenizer, AutoModelForCausalLM
65
+
66
+ device = "cuda" # the device to load the model onto
67
+ model_path = "01-ai/Yi-Coder-9B-Chat"
68
+
69
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
70
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
71
+
72
+ prompt = "Write a quick sort algorithm."
73
+ messages = [
74
+ {"role": "system", "content": "You are a helpful assistant."},
75
+ {"role": "user", "content": prompt}
76
+ ]
77
+ text = tokenizer.apply_chat_template(
78
+ messages,
79
+ tokenize=False,
80
+ add_generation_prompt=True
81
+ )
82
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
83
+
84
+ generated_ids = model.generate(
85
+ model_inputs.input_ids,
86
+ max_new_tokens=1024,
87
+ eos_token_id=tokenizer.eos_token_id
88
+ )
89
+ generated_ids = [
90
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
91
+ ]
92
+
93
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
94
+ print(response)
95
+ ```
96
+
97
+ For getting up and running with Yi-Coder series models quickly, see [Yi-Coder README](https://github.com/01-ai/Yi-Coder).
measurement.json ADDED
The diff for this file is too large to render. See raw diff