File size: 3,214 Bytes
3b34eb2 3b0fb3e 3b34eb2 fd5e5e4 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e 3b34eb2 3b0fb3e fd5e5e4 3b0fb3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
tags: [bangla, sentiment-analysis, NLP, transformers, onubhuti]
---
# 🌟 Onubhuti: Bangla Sentiment Analysis Model
**Onubhuti** is a sentiment analysis model specifically trained to classify Bangla text into **Positive**, **Neutral**, or **Negative** sentiments. Fine-tuned from **FB XLM-Roberta**, it leverages state-of-the-art NLP techniques for robust performance. This model can be applied to various natural language processing (NLP) tasks such as customer reviews, social media analysis, and more.
---
## 📖 Model Details
### 📋 Model Description
**Onubhuti** is a transformer-based model fine-tuned on Bangla text for sentiment classification tasks. It has been trained to classify Bangla sentences into three sentiment categories:
- **Positive**: Sentiments that express approval, happiness, or general positivity.
- **Neutral**: Sentiments that are neutral or have no clear positive or negative sentiment.
- **Negative**: Sentiments that express disapproval, dissatisfaction, or general negativity.
The model uses **FB XLM-Roberta**, a transformer model pre-trained on multilingual data and further fine-tuned specifically for Bangla. This enables the model to understand nuances in sentiment for Bangla text with high accuracy.
- **Developed by:** Nazmus Sakib Apurba
- **Funded by:** Not Funded
- **Shared by:** Tamim
- **Model type:** Transformer-based classification model
- **Language(s):** Bangla (বাংলা)
- **License:** Apache 2.0 (or any relevant license)
- **Finetuned from model:** FB XLM-Roberta
---
### 🔗 Model Sources
- **Repository:** [Your Hugging Face model URL](#)
- **Paper:** [Optional, link to relevant paper if available]
- **Demo:** [Optional, link to any demo or related page]
---
## 🚀 Uses
**Onubhuti** is designed for sentiment analysis tasks and can be used in various contexts:
- **Social Media Monitoring:** Analyzing tweets, Facebook posts, or other social media content for sentiment.
- **Customer Feedback Analysis:** Classifying customer reviews, survey responses, or feedback.
- **Content Moderation:** Identifying positive, negative, or neutral comments in a user-generated content environment.
### 🛠️ Installation and Usage
1. **Installation:**
To use this model, you need to install the necessary libraries:
```bash
pip install transformers torch
```
```bash
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("Apurba3036/onubhuti-bangla-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("Apurba3036/onubhuti-bangla-sentiment")
```
```bash
💡 Example Output:
Bangla text: এই জায়গাটা এত সুন্দর যে ভাষায় বর্ণনা করা কঠিন। পাহাড় আর সবুজ গাছপালার মিশেলে প্রকৃতি যেন তার সেরা রূপ এখানে মেলে ধরেছে। আমি এই জায়গায় বারবার আসতে চাই।
Predicted sentiment: Positive
```
|