--- language: en license: mit tags: - fasttext - tajik - word-embeddings - nlp --- # Tajik FastText Word Embedding Model This repository contains a pretrained **FastText** model for the **Tajik language**, trained on a large corpus of Tajik texts. The model supports **subword information**, allowing it to generate embeddings even for rare or unseen (OOV) words. The model is suitable for use in various NLP tasks such as: - Semantic analysis - Text classification - Machine translation - Synonym detection and thesaurus building - Enhancing other models through embedding initialization Licensed under the [MIT License](LICENSE), which allows free usage in both research and commercial applications. --- ## 📊 Model Overview | Parameter | Value | |------------------|----------------------------| | Model Type | FastText (with subwords) | | Vector Size | 300 | | Vocabulary Size | 145,232 | | OOV Support | Yes | | Context Window | 5 | | Min Word Count | ≥ 5 | --- ## 📚 Training Corpus ### Books (Total: 99) - Programming: 6 - History: 4 - Religion: 12 - Scientific: 3 - Children's literature: 6 - Prose: 19 - Poetry: 21 - Textbooks: 28 ### Articles (Total: 134,497) - Asia-Plus: 20,471 - Khovar: 21,557 - Ovozi Tojik: 7,495 - Farazh: 4,679 - Wikipedia: 80,295 ### Total Corpus Statistics - **Documents**: 134,596 - **Tokens**: 33,535,383 - **Unique Lemmas**: 649,308 --- ## 🧪 Model Comparison with Meta FastText We evaluated our model against Meta’s pretrained FastText using semantic similarity and Spearman correlation: | Model | Spearman Correlation | OOV Support | |------------------|----------------------|-------------| | FastText (Meta) | **0.703** | Yes | | **FastText (ours)** | **0.622** | **Yes** | While Meta FastText achieves better overall performance, our model demonstrates strong results on Tajik-specific morphology and semantics. --- ## 🔍 Example Similar Words | Word | Nearest Neighbors (FastText) | |-----------|-------------------------------| | кӯдак | кӯдаку(0.82), хурдкӯдак(0.81), кӯдакам(0.81), кӯдакат(0.81), кӯдаке(0.81) | | муаллим | муаллиме(0.90), муаллимат(0.89), муаллимин(0.89), муаллиму(0.88), муаллима(0.88) | | об | оби(0.79), обро(0.74), обмӯрии(0.70), обшустаи(0.68), обшуста(0.66) | | мард | марда(0.87), мардхӯ(0.85), мардвор(0.85), мардро(0.83), зан(0.82) | | деҳа | деҳайи(0.83), деҳаю(0.80), деҳавз(0.78), деҳакӣ(0.76), деҳодеҳ(0.74) | | китоб | китобӣ(0.84), китобгуна(0.83), китобча(0.81), китобсӯзӣ(0.81), китобро(0.81) | | меҳмон | меҳмонӣ(0.86), меҳмоншо(0.85), меҳмонат(0.83), меҳмонҳона(0.82), меҳмони(0.82) | | шаҳр | шаҳрӯ(0.82), шаҳрча(0.80), бушаҳр(0.79), шаҳрат(0.79), навшаҳр(0.79) | | падар | падаршӯ(0.89), падарӣ(0.84), падаршӯву(0.84), падаре(0.84), падаршон(0.83) | | модар | модаршӯ(0.86), модаршӯяш(0.83), модару(0.81), модаре(0.81), модарвор(0.80) | --- ## 🧩 Handling OOV (Out-of-Vocabulary) Words FastText supports generating vectors for unknown words via subword units (n-grams). Here are some examples: | Unknown Word | Closest Matches (FastText) | |--------------|----------------------------| | кӯдакона | кӯдаконаи(0.82), кӯдаконат(0.81), кӯдаконае(0.81) | | меҳмонамон | меҳмон(0.77), меҳмонҳо(0.77), меҳмонам(0.76) | | муаллимон | муаллимони(0.89), муаллимоне(0.88), муаллимону(0.83) | | деҳоти | дарҷамоати(0.79), чамоати(0.74), ҷамоати(0.81) | | саводнок | саводнокӣ(0.88), саводнокиву(0.85), саводнокии(0.84) | --- ## 📌 Features for Tajik Language Our model performs well on: - **Semantic similarity**: e.g., "мард" ↔ "зан", "китоб" ↔ "китобгуна" - **Morphological variants**: e.g., "кӯдак" → "кӯдаку", "кӯдаки" - **Rare/compound words**: thanks to subword representations like "саводнок", "деҳоти" --- ## 💡 Usage Example ```python from gensim.models import FastText model = FastText.load("tajik_fasttext.model") vector = model.wv["падар"] # Get vector for a word similar_words = model.wv.most_similar("модар") # Find similar words ``` --- ## 🗂️ Files Included | File | Description | |--------------------|----------------------------------------------| | `tajik_fasttext.model` | Gensim FastText model file | | `*.npy` files | Supporting NumPy arrays for vectors | --- ## 📚 Citation If you use this model, please cite: ```bibtex @misc{ArabovMK_Tajik_FastText, author = {ArabovMK}, title = {Tajik FastText Word Embeddings}, year = 2025, publisher = {Hugging Face}, url = {https://huggingface.co/ArabovMK/tajik-fasttext-model} } ``` *Last updated: 2025-05-10*