aman-jaglan commited on
Commit
bd3397c
·
verified ·
1 Parent(s): 7c893b7

Add SFT checkpoint

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.51.1",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.51.1"
13
+ }
global_step410/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66321a74f2a1d666b92262e2339ff7c4abbd57053b94c725bf79cbe0f7b4db80
3
+ size 24572211929
global_step410/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d7a0cec80e800a5b15be4a7042844a70a05c3efec8050b02fd7787c239b572b
3
+ size 24572211929
global_step410/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc44fa2c042b38396bbde285eb90a660e66f6ca9d83ff76c72c9ca4adfdf2f99
3
+ size 24572211929
global_step410/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df61a6ccc4ba4671644282bd42eba72b9fb535d26ed98dffdbe4dff497cdfb26
3
+ size 24572211929
global_step410/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e669c7904cb3cabe3f6b37d83b6caf271c9d4c6ba720261ef9161dce59690430
3
+ size 202476
global_step410/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e3ef95d0419f8bc8d46c69478a425fb6650fea5614c13a4d7fb8dd14cd62e74
3
+ size 202476
global_step410/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f6168375c9452866384f49785c912601a12d244b76044cc0f04d41cf6252536
3
+ size 202476
global_step410/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc34b121f3b715c31543fe820525c6f40f6be8a4813677c8dac7c7cd9abf8ad
3
+ size 202476
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step410
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18477acf812e969b4ba9b738bc1bbab96f2f3a1d129891da00b8a0f95624d162
3
+ size 4902257696
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6922b4f246a04611afddc8f2fe610d5bbb0744fa913dacd5ad7340818b3b2c8f
3
+ size 4915960368
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f692b97f713071d751f95896815d96abf9979696c4013a3b0b63e00cb3afabb
3
+ size 4983068496
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743a81d4f02051312f4d38166f9dc515a41a8f9a2df9f9c34cc3adbcd52d60fc
3
+ size 1580230264
model.safetensors.index.json ADDED
@@ -0,0 +1,406 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16381470720
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00004.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00004-of-00004.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
338
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
341
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
342
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
343
+ "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
344
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
345
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
349
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
350
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
352
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
353
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
354
+ "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
355
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
356
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
357
+ "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
358
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
359
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
360
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
361
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
362
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
363
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
364
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
365
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
366
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
368
+ "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
370
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
372
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
374
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
375
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
377
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
380
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
382
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
383
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
386
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
387
+ "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
390
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
393
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
394
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
395
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
397
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
398
+ "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
399
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
400
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
402
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
404
+ "model.norm.weight": "model-00004-of-00004.safetensors"
405
+ }
406
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81d5f83aeb4b3f559bd28377336d47659b320e7f6ef2e5a723d284716278a151
3
+ size 15429
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2626437dcb133ffcf003ac89603f8cce07459b93a98d760cd9419e0d6a994067
3
+ size 15429
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae777e24d50cb7159634e1245f0697ba0fc64d5b26d535f2c80e411371a90b1c
3
+ size 15429
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc5a67564eebcfc961e8f1406a7418cc73497c2935a39af0232ef59f8153a6a
3
+ size 15429
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74fdd8c9c0a294c480b68c98e8717d3f84a2af1b342225b0a31bca5d9910b0f3
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7bd8e5e2fda2a36b5770750293290847590e40f58931b87312c4bf1e9c69aa34
3
+ size 11422754
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
trainer_state.json ADDED
@@ -0,0 +1,2904 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 500,
7
+ "global_step": 410,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.012195121951219513,
14
+ "grad_norm": 20.605318069458008,
15
+ "learning_rate": 0.0,
16
+ "loss": 1.7928,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.024390243902439025,
21
+ "grad_norm": 20.76787567138672,
22
+ "learning_rate": 2.439024390243903e-07,
23
+ "loss": 1.7386,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.036585365853658534,
28
+ "grad_norm": 21.81036949157715,
29
+ "learning_rate": 4.878048780487805e-07,
30
+ "loss": 1.8763,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.04878048780487805,
35
+ "grad_norm": 20.621498107910156,
36
+ "learning_rate": 7.317073170731707e-07,
37
+ "loss": 1.8537,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.06097560975609756,
42
+ "grad_norm": 22.98723793029785,
43
+ "learning_rate": 9.75609756097561e-07,
44
+ "loss": 1.8113,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.07317073170731707,
49
+ "grad_norm": 19.314804077148438,
50
+ "learning_rate": 1.2195121951219514e-06,
51
+ "loss": 1.7677,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.08536585365853659,
56
+ "grad_norm": 21.158281326293945,
57
+ "learning_rate": 1.4634146341463414e-06,
58
+ "loss": 1.7847,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0975609756097561,
63
+ "grad_norm": 16.294034957885742,
64
+ "learning_rate": 1.707317073170732e-06,
65
+ "loss": 1.6678,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.10975609756097561,
70
+ "grad_norm": 16.788780212402344,
71
+ "learning_rate": 1.951219512195122e-06,
72
+ "loss": 1.6558,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.12195121951219512,
77
+ "grad_norm": 12.225774765014648,
78
+ "learning_rate": 2.1951219512195125e-06,
79
+ "loss": 1.2956,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.13414634146341464,
84
+ "grad_norm": 14.551143646240234,
85
+ "learning_rate": 2.4390243902439027e-06,
86
+ "loss": 1.5254,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.14634146341463414,
91
+ "grad_norm": 11.28449535369873,
92
+ "learning_rate": 2.682926829268293e-06,
93
+ "loss": 1.3579,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.15853658536585366,
98
+ "grad_norm": 7.676495552062988,
99
+ "learning_rate": 2.926829268292683e-06,
100
+ "loss": 1.2552,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.17073170731707318,
105
+ "grad_norm": 6.054831027984619,
106
+ "learning_rate": 3.1707317073170736e-06,
107
+ "loss": 1.0942,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.18292682926829268,
112
+ "grad_norm": 6.24427604675293,
113
+ "learning_rate": 3.414634146341464e-06,
114
+ "loss": 1.1486,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.1951219512195122,
119
+ "grad_norm": 5.555965900421143,
120
+ "learning_rate": 3.6585365853658537e-06,
121
+ "loss": 1.0225,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.2073170731707317,
126
+ "grad_norm": 4.953287124633789,
127
+ "learning_rate": 3.902439024390244e-06,
128
+ "loss": 1.0188,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.21951219512195122,
133
+ "grad_norm": 4.212824821472168,
134
+ "learning_rate": 4.146341463414634e-06,
135
+ "loss": 0.9555,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.23170731707317074,
140
+ "grad_norm": 4.176329135894775,
141
+ "learning_rate": 4.390243902439025e-06,
142
+ "loss": 0.9,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.24390243902439024,
147
+ "grad_norm": 4.0246734619140625,
148
+ "learning_rate": 4.634146341463416e-06,
149
+ "loss": 0.9001,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.25609756097560976,
154
+ "grad_norm": 4.022885322570801,
155
+ "learning_rate": 4.8780487804878055e-06,
156
+ "loss": 0.8557,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.2682926829268293,
161
+ "grad_norm": 3.9502739906311035,
162
+ "learning_rate": 5.121951219512195e-06,
163
+ "loss": 0.9313,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.2804878048780488,
168
+ "grad_norm": 3.4761359691619873,
169
+ "learning_rate": 5.365853658536586e-06,
170
+ "loss": 0.8559,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.2926829268292683,
175
+ "grad_norm": 3.896311044692993,
176
+ "learning_rate": 5.609756097560977e-06,
177
+ "loss": 0.9048,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.3048780487804878,
182
+ "grad_norm": 3.714123010635376,
183
+ "learning_rate": 5.853658536585366e-06,
184
+ "loss": 0.7699,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.3170731707317073,
189
+ "grad_norm": 4.503406524658203,
190
+ "learning_rate": 6.0975609756097564e-06,
191
+ "loss": 0.8699,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.32926829268292684,
196
+ "grad_norm": 3.643167734146118,
197
+ "learning_rate": 6.341463414634147e-06,
198
+ "loss": 0.8047,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.34146341463414637,
203
+ "grad_norm": 3.93937087059021,
204
+ "learning_rate": 6.585365853658538e-06,
205
+ "loss": 0.8064,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.35365853658536583,
210
+ "grad_norm": 3.669752836227417,
211
+ "learning_rate": 6.829268292682928e-06,
212
+ "loss": 0.7593,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.36585365853658536,
217
+ "grad_norm": 3.5783209800720215,
218
+ "learning_rate": 7.0731707317073175e-06,
219
+ "loss": 0.7464,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.3780487804878049,
224
+ "grad_norm": 3.4129626750946045,
225
+ "learning_rate": 7.317073170731707e-06,
226
+ "loss": 0.8218,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.3902439024390244,
231
+ "grad_norm": 3.250596761703491,
232
+ "learning_rate": 7.560975609756098e-06,
233
+ "loss": 0.8161,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.4024390243902439,
238
+ "grad_norm": 3.030006170272827,
239
+ "learning_rate": 7.804878048780489e-06,
240
+ "loss": 0.6851,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.4146341463414634,
245
+ "grad_norm": 3.556096076965332,
246
+ "learning_rate": 8.048780487804879e-06,
247
+ "loss": 0.8649,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.4268292682926829,
252
+ "grad_norm": 3.155592203140259,
253
+ "learning_rate": 8.292682926829268e-06,
254
+ "loss": 0.7146,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.43902439024390244,
259
+ "grad_norm": 2.923524856567383,
260
+ "learning_rate": 8.536585365853658e-06,
261
+ "loss": 0.7535,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.45121951219512196,
266
+ "grad_norm": 3.1197190284729004,
267
+ "learning_rate": 8.78048780487805e-06,
268
+ "loss": 0.7267,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.4634146341463415,
273
+ "grad_norm": 2.902597188949585,
274
+ "learning_rate": 9.02439024390244e-06,
275
+ "loss": 0.7113,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.47560975609756095,
280
+ "grad_norm": 3.2583975791931152,
281
+ "learning_rate": 9.268292682926831e-06,
282
+ "loss": 0.8452,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.4878048780487805,
287
+ "grad_norm": 3.5036613941192627,
288
+ "learning_rate": 9.51219512195122e-06,
289
+ "loss": 0.7932,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.5,
294
+ "grad_norm": 2.883305788040161,
295
+ "learning_rate": 9.756097560975611e-06,
296
+ "loss": 0.7578,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.5121951219512195,
301
+ "grad_norm": 2.8983325958251953,
302
+ "learning_rate": 1e-05,
303
+ "loss": 0.6646,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.524390243902439,
308
+ "grad_norm": 3.0411853790283203,
309
+ "learning_rate": 9.999959340292497e-06,
310
+ "loss": 0.743,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.5365853658536586,
315
+ "grad_norm": 3.015455484390259,
316
+ "learning_rate": 9.999837361831269e-06,
317
+ "loss": 0.6727,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.5487804878048781,
322
+ "grad_norm": 3.099972724914551,
323
+ "learning_rate": 9.999634066600162e-06,
324
+ "loss": 0.7748,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.5609756097560976,
329
+ "grad_norm": 2.834282875061035,
330
+ "learning_rate": 9.999349457905545e-06,
331
+ "loss": 0.6954,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.573170731707317,
336
+ "grad_norm": 3.012594223022461,
337
+ "learning_rate": 9.998983540376262e-06,
338
+ "loss": 0.8249,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.5853658536585366,
343
+ "grad_norm": 3.121540069580078,
344
+ "learning_rate": 9.99853631996355e-06,
345
+ "loss": 0.7512,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.5975609756097561,
350
+ "grad_norm": 2.814594030380249,
351
+ "learning_rate": 9.99800780394095e-06,
352
+ "loss": 0.749,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.6097560975609756,
357
+ "grad_norm": 2.8075897693634033,
358
+ "learning_rate": 9.997398000904185e-06,
359
+ "loss": 0.7249,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.6219512195121951,
364
+ "grad_norm": 3.2552330493927,
365
+ "learning_rate": 9.996706920771024e-06,
366
+ "loss": 0.7802,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.6341463414634146,
371
+ "grad_norm": 3.095428705215454,
372
+ "learning_rate": 9.995934574781108e-06,
373
+ "loss": 0.753,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.6463414634146342,
378
+ "grad_norm": 2.9792091846466064,
379
+ "learning_rate": 9.995080975495786e-06,
380
+ "loss": 0.7911,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.6585365853658537,
385
+ "grad_norm": 3.0372695922851562,
386
+ "learning_rate": 9.994146136797893e-06,
387
+ "loss": 0.7471,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.6707317073170732,
392
+ "grad_norm": 3.14581036567688,
393
+ "learning_rate": 9.993130073891539e-06,
394
+ "loss": 0.7912,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.6829268292682927,
399
+ "grad_norm": 2.859478235244751,
400
+ "learning_rate": 9.992032803301852e-06,
401
+ "loss": 0.6547,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.6951219512195121,
406
+ "grad_norm": 2.866575002670288,
407
+ "learning_rate": 9.990854342874712e-06,
408
+ "loss": 0.7098,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.7073170731707317,
413
+ "grad_norm": 3.036907434463501,
414
+ "learning_rate": 9.98959471177646e-06,
415
+ "loss": 0.8274,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.7195121951219512,
420
+ "grad_norm": 2.837873935699463,
421
+ "learning_rate": 9.988253930493592e-06,
422
+ "loss": 0.7151,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.7317073170731707,
427
+ "grad_norm": 2.6678829193115234,
428
+ "learning_rate": 9.986832020832416e-06,
429
+ "loss": 0.6541,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.7439024390243902,
434
+ "grad_norm": 2.9930105209350586,
435
+ "learning_rate": 9.985329005918702e-06,
436
+ "loss": 0.6892,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.7560975609756098,
441
+ "grad_norm": 2.858548164367676,
442
+ "learning_rate": 9.983744910197315e-06,
443
+ "loss": 0.6988,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.7682926829268293,
448
+ "grad_norm": 3.0590319633483887,
449
+ "learning_rate": 9.982079759431797e-06,
450
+ "loss": 0.6853,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.7804878048780488,
455
+ "grad_norm": 2.8750498294830322,
456
+ "learning_rate": 9.980333580703968e-06,
457
+ "loss": 0.7181,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.7926829268292683,
462
+ "grad_norm": 2.720283031463623,
463
+ "learning_rate": 9.978506402413472e-06,
464
+ "loss": 0.6339,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.8048780487804879,
469
+ "grad_norm": 2.936540126800537,
470
+ "learning_rate": 9.976598254277324e-06,
471
+ "loss": 0.7085,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.8170731707317073,
476
+ "grad_norm": 2.7820205688476562,
477
+ "learning_rate": 9.974609167329425e-06,
478
+ "loss": 0.6682,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.8292682926829268,
483
+ "grad_norm": 2.852302312850952,
484
+ "learning_rate": 9.972539173920048e-06,
485
+ "loss": 0.7067,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.8414634146341463,
490
+ "grad_norm": 2.763120651245117,
491
+ "learning_rate": 9.970388307715326e-06,
492
+ "loss": 0.6512,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.8536585365853658,
497
+ "grad_norm": 2.834955930709839,
498
+ "learning_rate": 9.968156603696696e-06,
499
+ "loss": 0.692,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.8658536585365854,
504
+ "grad_norm": 2.5952882766723633,
505
+ "learning_rate": 9.965844098160326e-06,
506
+ "loss": 0.6458,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.8780487804878049,
511
+ "grad_norm": 2.793827533721924,
512
+ "learning_rate": 9.963450828716543e-06,
513
+ "loss": 0.7312,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.8902439024390244,
518
+ "grad_norm": 2.7760300636291504,
519
+ "learning_rate": 9.960976834289197e-06,
520
+ "loss": 0.6733,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.9024390243902439,
525
+ "grad_norm": 3.0652453899383545,
526
+ "learning_rate": 9.958422155115044e-06,
527
+ "loss": 0.7255,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.9146341463414634,
532
+ "grad_norm": 2.7409512996673584,
533
+ "learning_rate": 9.955786832743089e-06,
534
+ "loss": 0.7146,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.926829268292683,
539
+ "grad_norm": 2.671405553817749,
540
+ "learning_rate": 9.953070910033904e-06,
541
+ "loss": 0.7051,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.9390243902439024,
546
+ "grad_norm": 3.065516233444214,
547
+ "learning_rate": 9.95027443115894e-06,
548
+ "loss": 0.7027,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.9512195121951219,
553
+ "grad_norm": 2.724518060684204,
554
+ "learning_rate": 9.947397441599801e-06,
555
+ "loss": 0.7046,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.9634146341463414,
560
+ "grad_norm": 2.762394428253174,
561
+ "learning_rate": 9.944439988147509e-06,
562
+ "loss": 0.6638,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.975609756097561,
567
+ "grad_norm": 2.7874350547790527,
568
+ "learning_rate": 9.941402118901743e-06,
569
+ "loss": 0.6985,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.9878048780487805,
574
+ "grad_norm": 2.785700798034668,
575
+ "learning_rate": 9.938283883270051e-06,
576
+ "loss": 0.6443,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 1.0,
581
+ "grad_norm": 2.859963893890381,
582
+ "learning_rate": 9.935085331967054e-06,
583
+ "loss": 0.6987,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 1.0121951219512195,
588
+ "grad_norm": 2.341641902923584,
589
+ "learning_rate": 9.931806517013612e-06,
590
+ "loss": 0.4309,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 1.024390243902439,
595
+ "grad_norm": 2.2350566387176514,
596
+ "learning_rate": 9.928447491735994e-06,
597
+ "loss": 0.3769,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 1.0365853658536586,
602
+ "grad_norm": 2.750514030456543,
603
+ "learning_rate": 9.925008310764988e-06,
604
+ "loss": 0.5076,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 1.048780487804878,
609
+ "grad_norm": 2.627335548400879,
610
+ "learning_rate": 9.921489030035036e-06,
611
+ "loss": 0.359,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 1.0609756097560976,
616
+ "grad_norm": 2.739978075027466,
617
+ "learning_rate": 9.917889706783304e-06,
618
+ "loss": 0.4735,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 1.0731707317073171,
623
+ "grad_norm": 3.0831549167633057,
624
+ "learning_rate": 9.914210399548768e-06,
625
+ "loss": 0.5604,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 1.0853658536585367,
630
+ "grad_norm": 3.0366146564483643,
631
+ "learning_rate": 9.910451168171248e-06,
632
+ "loss": 0.3986,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 1.0975609756097562,
637
+ "grad_norm": 2.8682730197906494,
638
+ "learning_rate": 9.906612073790443e-06,
639
+ "loss": 0.4118,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 1.1097560975609757,
644
+ "grad_norm": 2.9994473457336426,
645
+ "learning_rate": 9.902693178844937e-06,
646
+ "loss": 0.4581,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 1.1219512195121952,
651
+ "grad_norm": 3.4703030586242676,
652
+ "learning_rate": 9.898694547071177e-06,
653
+ "loss": 0.5222,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 1.1341463414634148,
658
+ "grad_norm": 2.6934309005737305,
659
+ "learning_rate": 9.894616243502442e-06,
660
+ "loss": 0.3656,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 1.146341463414634,
665
+ "grad_norm": 2.379758834838867,
666
+ "learning_rate": 9.890458334467784e-06,
667
+ "loss": 0.3277,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 1.1585365853658536,
672
+ "grad_norm": 2.7950727939605713,
673
+ "learning_rate": 9.886220887590953e-06,
674
+ "loss": 0.4012,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 1.170731707317073,
679
+ "grad_norm": 2.668951988220215,
680
+ "learning_rate": 9.881903971789285e-06,
681
+ "loss": 0.4384,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 1.1829268292682926,
686
+ "grad_norm": 2.785778522491455,
687
+ "learning_rate": 9.877507657272596e-06,
688
+ "loss": 0.4727,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 1.1951219512195121,
693
+ "grad_norm": 2.7798571586608887,
694
+ "learning_rate": 9.873032015542027e-06,
695
+ "loss": 0.4594,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 1.2073170731707317,
700
+ "grad_norm": 2.9862515926361084,
701
+ "learning_rate": 9.868477119388897e-06,
702
+ "loss": 0.4715,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 1.2195121951219512,
707
+ "grad_norm": 2.749171495437622,
708
+ "learning_rate": 9.863843042893499e-06,
709
+ "loss": 0.4125,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 1.2317073170731707,
714
+ "grad_norm": 2.4786319732666016,
715
+ "learning_rate": 9.859129861423915e-06,
716
+ "loss": 0.4036,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 1.2439024390243902,
721
+ "grad_norm": 2.724829912185669,
722
+ "learning_rate": 9.854337651634773e-06,
723
+ "loss": 0.4688,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 1.2560975609756098,
728
+ "grad_norm": 2.5419397354125977,
729
+ "learning_rate": 9.849466491466017e-06,
730
+ "loss": 0.4276,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 1.2682926829268293,
735
+ "grad_norm": 2.508129596710205,
736
+ "learning_rate": 9.844516460141622e-06,
737
+ "loss": 0.401,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 1.2804878048780488,
742
+ "grad_norm": 2.677839756011963,
743
+ "learning_rate": 9.839487638168321e-06,
744
+ "loss": 0.3839,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 1.2926829268292683,
749
+ "grad_norm": 2.811065912246704,
750
+ "learning_rate": 9.834380107334284e-06,
751
+ "loss": 0.3876,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 1.3048780487804879,
756
+ "grad_norm": 2.7741312980651855,
757
+ "learning_rate": 9.829193950707798e-06,
758
+ "loss": 0.4019,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 1.3170731707317074,
763
+ "grad_norm": 2.604609727859497,
764
+ "learning_rate": 9.823929252635905e-06,
765
+ "loss": 0.3753,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 1.329268292682927,
770
+ "grad_norm": 3.5267436504364014,
771
+ "learning_rate": 9.818586098743038e-06,
772
+ "loss": 0.5063,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 1.3414634146341464,
777
+ "grad_norm": 2.785386085510254,
778
+ "learning_rate": 9.813164575929628e-06,
779
+ "loss": 0.4035,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 1.3536585365853657,
784
+ "grad_norm": 2.7874209880828857,
785
+ "learning_rate": 9.807664772370689e-06,
786
+ "loss": 0.4387,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 1.3658536585365852,
791
+ "grad_norm": 2.616459369659424,
792
+ "learning_rate": 9.80208677751438e-06,
793
+ "loss": 0.4403,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 1.3780487804878048,
798
+ "grad_norm": 2.593151092529297,
799
+ "learning_rate": 9.79643068208056e-06,
800
+ "loss": 0.418,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 1.3902439024390243,
805
+ "grad_norm": 2.3522331714630127,
806
+ "learning_rate": 9.7906965780593e-06,
807
+ "loss": 0.3226,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 1.4024390243902438,
812
+ "grad_norm": 2.945878028869629,
813
+ "learning_rate": 9.784884558709398e-06,
814
+ "loss": 0.4744,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 1.4146341463414633,
819
+ "grad_norm": 2.6254990100860596,
820
+ "learning_rate": 9.778994718556856e-06,
821
+ "loss": 0.3656,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 1.4268292682926829,
826
+ "grad_norm": 2.6019349098205566,
827
+ "learning_rate": 9.773027153393349e-06,
828
+ "loss": 0.3957,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 1.4390243902439024,
833
+ "grad_norm": 2.8025217056274414,
834
+ "learning_rate": 9.766981960274653e-06,
835
+ "loss": 0.4242,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 1.451219512195122,
840
+ "grad_norm": 2.747736930847168,
841
+ "learning_rate": 9.760859237519087e-06,
842
+ "loss": 0.4247,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 1.4634146341463414,
847
+ "grad_norm": 2.8022918701171875,
848
+ "learning_rate": 9.754659084705893e-06,
849
+ "loss": 0.3984,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 1.475609756097561,
854
+ "grad_norm": 2.5835225582122803,
855
+ "learning_rate": 9.748381602673633e-06,
856
+ "loss": 0.4205,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 1.4878048780487805,
861
+ "grad_norm": 2.7356934547424316,
862
+ "learning_rate": 9.742026893518541e-06,
863
+ "loss": 0.4098,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 1.5,
868
+ "grad_norm": 2.6171412467956543,
869
+ "learning_rate": 9.735595060592861e-06,
870
+ "loss": 0.4281,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 1.5121951219512195,
875
+ "grad_norm": 2.646216630935669,
876
+ "learning_rate": 9.729086208503174e-06,
877
+ "loss": 0.4301,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 1.524390243902439,
882
+ "grad_norm": 3.031221866607666,
883
+ "learning_rate": 9.722500443108687e-06,
884
+ "loss": 0.5132,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 1.5365853658536586,
889
+ "grad_norm": 2.813753843307495,
890
+ "learning_rate": 9.715837871519518e-06,
891
+ "loss": 0.464,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 1.548780487804878,
896
+ "grad_norm": 2.7644271850585938,
897
+ "learning_rate": 9.709098602094952e-06,
898
+ "loss": 0.4589,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 1.5609756097560976,
903
+ "grad_norm": 2.8581771850585938,
904
+ "learning_rate": 9.70228274444168e-06,
905
+ "loss": 0.4659,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 1.5731707317073171,
910
+ "grad_norm": 2.6003692150115967,
911
+ "learning_rate": 9.695390409412011e-06,
912
+ "loss": 0.3784,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 1.5853658536585367,
917
+ "grad_norm": 2.455249547958374,
918
+ "learning_rate": 9.688421709102076e-06,
919
+ "loss": 0.4141,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 1.5975609756097562,
924
+ "grad_norm": 2.439664363861084,
925
+ "learning_rate": 9.681376756850003e-06,
926
+ "loss": 0.3995,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 1.6097560975609757,
931
+ "grad_norm": 2.6555984020233154,
932
+ "learning_rate": 9.67425566723407e-06,
933
+ "loss": 0.4611,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 1.6219512195121952,
938
+ "grad_norm": 2.4294567108154297,
939
+ "learning_rate": 9.667058556070846e-06,
940
+ "loss": 0.4316,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 1.6341463414634148,
945
+ "grad_norm": 2.5822300910949707,
946
+ "learning_rate": 9.659785540413303e-06,
947
+ "loss": 0.4274,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 1.6463414634146343,
952
+ "grad_norm": 2.7250919342041016,
953
+ "learning_rate": 9.652436738548917e-06,
954
+ "loss": 0.4271,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 1.6585365853658538,
959
+ "grad_norm": 2.6819536685943604,
960
+ "learning_rate": 9.645012269997747e-06,
961
+ "loss": 0.4141,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 1.6707317073170733,
966
+ "grad_norm": 2.830106496810913,
967
+ "learning_rate": 9.637512255510475e-06,
968
+ "loss": 0.466,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 1.6829268292682928,
973
+ "grad_norm": 2.6315557956695557,
974
+ "learning_rate": 9.629936817066459e-06,
975
+ "loss": 0.4085,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 1.6951219512195121,
980
+ "grad_norm": 2.916368246078491,
981
+ "learning_rate": 9.622286077871748e-06,
982
+ "loss": 0.4728,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 1.7073170731707317,
987
+ "grad_norm": 3.0268235206604004,
988
+ "learning_rate": 9.614560162357065e-06,
989
+ "loss": 0.4548,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 1.7195121951219512,
994
+ "grad_norm": 2.8294835090637207,
995
+ "learning_rate": 9.606759196175799e-06,
996
+ "loss": 0.4145,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 1.7317073170731707,
1001
+ "grad_norm": 2.861173391342163,
1002
+ "learning_rate": 9.598883306201949e-06,
1003
+ "loss": 0.4283,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 1.7439024390243902,
1008
+ "grad_norm": 2.8794517517089844,
1009
+ "learning_rate": 9.590932620528068e-06,
1010
+ "loss": 0.5036,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 1.7560975609756098,
1015
+ "grad_norm": 2.633896589279175,
1016
+ "learning_rate": 9.58290726846318e-06,
1017
+ "loss": 0.4355,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 1.7682926829268293,
1022
+ "grad_norm": 2.5964772701263428,
1023
+ "learning_rate": 9.57480738053067e-06,
1024
+ "loss": 0.443,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 1.7804878048780488,
1029
+ "grad_norm": 2.5255353450775146,
1030
+ "learning_rate": 9.566633088466169e-06,
1031
+ "loss": 0.4135,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 1.7926829268292683,
1036
+ "grad_norm": 2.3389077186584473,
1037
+ "learning_rate": 9.558384525215406e-06,
1038
+ "loss": 0.4233,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 1.8048780487804879,
1043
+ "grad_norm": 2.570801019668579,
1044
+ "learning_rate": 9.550061824932047e-06,
1045
+ "loss": 0.4227,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 1.8170731707317072,
1050
+ "grad_norm": 2.7482798099517822,
1051
+ "learning_rate": 9.54166512297552e-06,
1052
+ "loss": 0.4779,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 1.8292682926829267,
1057
+ "grad_norm": 3.0880026817321777,
1058
+ "learning_rate": 9.533194555908796e-06,
1059
+ "loss": 0.5231,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 1.8414634146341462,
1064
+ "grad_norm": 2.6744909286499023,
1065
+ "learning_rate": 9.524650261496195e-06,
1066
+ "loss": 0.4608,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 1.8536585365853657,
1071
+ "grad_norm": 2.891713857650757,
1072
+ "learning_rate": 9.516032378701117e-06,
1073
+ "loss": 0.473,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 1.8658536585365852,
1078
+ "grad_norm": 2.547239303588867,
1079
+ "learning_rate": 9.5073410476838e-06,
1080
+ "loss": 0.4051,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 1.8780487804878048,
1085
+ "grad_norm": 2.723076581954956,
1086
+ "learning_rate": 9.498576409799034e-06,
1087
+ "loss": 0.4558,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 1.8902439024390243,
1092
+ "grad_norm": 3.1596052646636963,
1093
+ "learning_rate": 9.489738607593867e-06,
1094
+ "loss": 0.4865,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 1.9024390243902438,
1099
+ "grad_norm": 2.7183949947357178,
1100
+ "learning_rate": 9.480827784805278e-06,
1101
+ "loss": 0.5014,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 1.9146341463414633,
1106
+ "grad_norm": 2.5864574909210205,
1107
+ "learning_rate": 9.471844086357848e-06,
1108
+ "loss": 0.4149,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 1.9268292682926829,
1113
+ "grad_norm": 2.5046157836914062,
1114
+ "learning_rate": 9.462787658361394e-06,
1115
+ "loss": 0.3962,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 1.9390243902439024,
1120
+ "grad_norm": 2.8331422805786133,
1121
+ "learning_rate": 9.453658648108604e-06,
1122
+ "loss": 0.3853,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 1.951219512195122,
1127
+ "grad_norm": 2.512298822402954,
1128
+ "learning_rate": 9.444457204072632e-06,
1129
+ "loss": 0.4437,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 1.9634146341463414,
1134
+ "grad_norm": 2.444852828979492,
1135
+ "learning_rate": 9.435183475904688e-06,
1136
+ "loss": 0.3504,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 1.975609756097561,
1141
+ "grad_norm": 2.8331000804901123,
1142
+ "learning_rate": 9.425837614431601e-06,
1143
+ "loss": 0.4716,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 1.9878048780487805,
1148
+ "grad_norm": 2.661059856414795,
1149
+ "learning_rate": 9.416419771653368e-06,
1150
+ "loss": 0.4385,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 2.0,
1155
+ "grad_norm": 2.646305799484253,
1156
+ "learning_rate": 9.406930100740686e-06,
1157
+ "loss": 0.4184,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 2.0121951219512195,
1162
+ "grad_norm": 2.712597608566284,
1163
+ "learning_rate": 9.397368756032445e-06,
1164
+ "loss": 0.2314,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 2.024390243902439,
1169
+ "grad_norm": 2.586576461791992,
1170
+ "learning_rate": 9.387735893033244e-06,
1171
+ "loss": 0.1831,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 2.0365853658536586,
1176
+ "grad_norm": 2.5278258323669434,
1177
+ "learning_rate": 9.378031668410836e-06,
1178
+ "loss": 0.2375,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 2.048780487804878,
1183
+ "grad_norm": 2.541187047958374,
1184
+ "learning_rate": 9.368256239993597e-06,
1185
+ "loss": 0.1981,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 2.0609756097560976,
1190
+ "grad_norm": 2.764477252960205,
1191
+ "learning_rate": 9.358409766767946e-06,
1192
+ "loss": 0.2029,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 2.073170731707317,
1197
+ "grad_norm": 2.4784131050109863,
1198
+ "learning_rate": 9.348492408875779e-06,
1199
+ "loss": 0.1535,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 2.0853658536585367,
1204
+ "grad_norm": 2.915125846862793,
1205
+ "learning_rate": 9.338504327611839e-06,
1206
+ "loss": 0.1598,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 2.097560975609756,
1211
+ "grad_norm": 2.7254488468170166,
1212
+ "learning_rate": 9.328445685421113e-06,
1213
+ "loss": 0.1462,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 2.1097560975609757,
1218
+ "grad_norm": 2.9409985542297363,
1219
+ "learning_rate": 9.318316645896182e-06,
1220
+ "loss": 0.203,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 2.1219512195121952,
1225
+ "grad_norm": 2.588385820388794,
1226
+ "learning_rate": 9.308117373774555e-06,
1227
+ "loss": 0.1795,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 2.1341463414634148,
1232
+ "grad_norm": 2.7931816577911377,
1233
+ "learning_rate": 9.297848034936007e-06,
1234
+ "loss": 0.1993,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 2.1463414634146343,
1239
+ "grad_norm": 2.3102173805236816,
1240
+ "learning_rate": 9.287508796399858e-06,
1241
+ "loss": 0.1839,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 2.158536585365854,
1246
+ "grad_norm": 2.3756439685821533,
1247
+ "learning_rate": 9.277099826322277e-06,
1248
+ "loss": 0.2063,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 2.1707317073170733,
1253
+ "grad_norm": 2.2752017974853516,
1254
+ "learning_rate": 9.266621293993534e-06,
1255
+ "loss": 0.1699,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 2.182926829268293,
1260
+ "grad_norm": 2.484127998352051,
1261
+ "learning_rate": 9.256073369835255e-06,
1262
+ "loss": 0.1763,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 2.1951219512195124,
1267
+ "grad_norm": 2.3598098754882812,
1268
+ "learning_rate": 9.245456225397642e-06,
1269
+ "loss": 0.1677,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 2.207317073170732,
1274
+ "grad_norm": 2.2330524921417236,
1275
+ "learning_rate": 9.23477003335669e-06,
1276
+ "loss": 0.185,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 2.2195121951219514,
1281
+ "grad_norm": 2.439162492752075,
1282
+ "learning_rate": 9.224014967511378e-06,
1283
+ "loss": 0.1582,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 2.231707317073171,
1288
+ "grad_norm": 2.601541042327881,
1289
+ "learning_rate": 9.213191202780835e-06,
1290
+ "loss": 0.1737,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 2.2439024390243905,
1295
+ "grad_norm": 2.3318488597869873,
1296
+ "learning_rate": 9.20229891520151e-06,
1297
+ "loss": 0.1688,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 2.2560975609756095,
1302
+ "grad_norm": 2.883798122406006,
1303
+ "learning_rate": 9.191338281924288e-06,
1304
+ "loss": 0.2094,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 2.2682926829268295,
1309
+ "grad_norm": 2.4024503231048584,
1310
+ "learning_rate": 9.180309481211629e-06,
1311
+ "loss": 0.183,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 2.2804878048780486,
1316
+ "grad_norm": 2.7932958602905273,
1317
+ "learning_rate": 9.169212692434658e-06,
1318
+ "loss": 0.2388,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 2.292682926829268,
1323
+ "grad_norm": 2.345780372619629,
1324
+ "learning_rate": 9.158048096070249e-06,
1325
+ "loss": 0.1698,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 2.3048780487804876,
1330
+ "grad_norm": 2.3633759021759033,
1331
+ "learning_rate": 9.14681587369809e-06,
1332
+ "loss": 0.1797,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 2.317073170731707,
1337
+ "grad_norm": 2.4073266983032227,
1338
+ "learning_rate": 9.13551620799773e-06,
1339
+ "loss": 0.1744,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 2.3292682926829267,
1344
+ "grad_norm": 2.4266092777252197,
1345
+ "learning_rate": 9.124149282745614e-06,
1346
+ "loss": 0.1874,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 2.341463414634146,
1351
+ "grad_norm": 2.277799129486084,
1352
+ "learning_rate": 9.112715282812081e-06,
1353
+ "loss": 0.2014,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 2.3536585365853657,
1358
+ "grad_norm": 2.5907177925109863,
1359
+ "learning_rate": 9.101214394158371e-06,
1360
+ "loss": 0.1911,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 2.3658536585365852,
1365
+ "grad_norm": 2.6057519912719727,
1366
+ "learning_rate": 9.089646803833589e-06,
1367
+ "loss": 0.2172,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 2.3780487804878048,
1372
+ "grad_norm": 2.3195533752441406,
1373
+ "learning_rate": 9.078012699971673e-06,
1374
+ "loss": 0.184,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 2.3902439024390243,
1379
+ "grad_norm": 2.62652850151062,
1380
+ "learning_rate": 9.066312271788323e-06,
1381
+ "loss": 0.2185,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 2.402439024390244,
1386
+ "grad_norm": 2.2538259029388428,
1387
+ "learning_rate": 9.054545709577939e-06,
1388
+ "loss": 0.1797,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 2.4146341463414633,
1393
+ "grad_norm": 2.573920965194702,
1394
+ "learning_rate": 9.042713204710509e-06,
1395
+ "loss": 0.1791,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 2.426829268292683,
1400
+ "grad_norm": 2.010896921157837,
1401
+ "learning_rate": 9.030814949628509e-06,
1402
+ "loss": 0.1471,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 2.4390243902439024,
1407
+ "grad_norm": 2.5009727478027344,
1408
+ "learning_rate": 9.018851137843765e-06,
1409
+ "loss": 0.1805,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 2.451219512195122,
1414
+ "grad_norm": 2.673194169998169,
1415
+ "learning_rate": 9.006821963934316e-06,
1416
+ "loss": 0.2134,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 2.4634146341463414,
1421
+ "grad_norm": 2.851163387298584,
1422
+ "learning_rate": 8.994727623541237e-06,
1423
+ "loss": 0.1902,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 2.475609756097561,
1428
+ "grad_norm": 3.064375877380371,
1429
+ "learning_rate": 8.982568313365467e-06,
1430
+ "loss": 0.2247,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 2.4878048780487805,
1435
+ "grad_norm": 2.5090184211730957,
1436
+ "learning_rate": 8.970344231164602e-06,
1437
+ "loss": 0.2022,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 2.5,
1442
+ "grad_norm": 2.2384963035583496,
1443
+ "learning_rate": 8.958055575749685e-06,
1444
+ "loss": 0.1954,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 2.5121951219512195,
1449
+ "grad_norm": 2.3855085372924805,
1450
+ "learning_rate": 8.94570254698197e-06,
1451
+ "loss": 0.2088,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 2.524390243902439,
1456
+ "grad_norm": 2.38485050201416,
1457
+ "learning_rate": 8.933285345769671e-06,
1458
+ "loss": 0.1926,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 2.5365853658536586,
1463
+ "grad_norm": 2.5828115940093994,
1464
+ "learning_rate": 8.920804174064697e-06,
1465
+ "loss": 0.2452,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 2.548780487804878,
1470
+ "grad_norm": 2.271554470062256,
1471
+ "learning_rate": 8.908259234859365e-06,
1472
+ "loss": 0.1858,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 2.5609756097560976,
1477
+ "grad_norm": 2.114044189453125,
1478
+ "learning_rate": 8.895650732183094e-06,
1479
+ "loss": 0.1766,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 2.573170731707317,
1484
+ "grad_norm": 2.3854148387908936,
1485
+ "learning_rate": 8.882978871099104e-06,
1486
+ "loss": 0.2026,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 2.5853658536585367,
1491
+ "grad_norm": 2.409749746322632,
1492
+ "learning_rate": 8.870243857701054e-06,
1493
+ "loss": 0.2135,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 2.597560975609756,
1498
+ "grad_norm": 2.269014596939087,
1499
+ "learning_rate": 8.857445899109716e-06,
1500
+ "loss": 0.173,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 2.6097560975609757,
1505
+ "grad_norm": 2.1958768367767334,
1506
+ "learning_rate": 8.84458520346959e-06,
1507
+ "loss": 0.1803,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 2.6219512195121952,
1512
+ "grad_norm": 2.2031567096710205,
1513
+ "learning_rate": 8.831661979945522e-06,
1514
+ "loss": 0.1701,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 2.6341463414634148,
1519
+ "grad_norm": 2.523292303085327,
1520
+ "learning_rate": 8.818676438719314e-06,
1521
+ "loss": 0.1988,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 2.6463414634146343,
1526
+ "grad_norm": 2.597362995147705,
1527
+ "learning_rate": 8.805628790986284e-06,
1528
+ "loss": 0.2264,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 2.658536585365854,
1533
+ "grad_norm": 2.802621603012085,
1534
+ "learning_rate": 8.792519248951851e-06,
1535
+ "loss": 0.2293,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 2.6707317073170733,
1540
+ "grad_norm": 2.707906484603882,
1541
+ "learning_rate": 8.779348025828071e-06,
1542
+ "loss": 0.2012,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 2.682926829268293,
1547
+ "grad_norm": 2.630911350250244,
1548
+ "learning_rate": 8.766115335830178e-06,
1549
+ "loss": 0.1975,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 2.6951219512195124,
1554
+ "grad_norm": 2.492384195327759,
1555
+ "learning_rate": 8.752821394173092e-06,
1556
+ "loss": 0.1893,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 2.7073170731707314,
1561
+ "grad_norm": 2.3401095867156982,
1562
+ "learning_rate": 8.739466417067926e-06,
1563
+ "loss": 0.1769,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 2.7195121951219514,
1568
+ "grad_norm": 2.6099853515625,
1569
+ "learning_rate": 8.726050621718462e-06,
1570
+ "loss": 0.1746,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 2.7317073170731705,
1575
+ "grad_norm": 2.4008710384368896,
1576
+ "learning_rate": 8.71257422631763e-06,
1577
+ "loss": 0.222,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 2.7439024390243905,
1582
+ "grad_norm": 2.5295095443725586,
1583
+ "learning_rate": 8.699037450043945e-06,
1584
+ "loss": 0.2196,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 2.7560975609756095,
1589
+ "grad_norm": 2.4341542720794678,
1590
+ "learning_rate": 8.685440513057955e-06,
1591
+ "loss": 0.2019,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 2.7682926829268295,
1596
+ "grad_norm": 2.379326343536377,
1597
+ "learning_rate": 8.671783636498652e-06,
1598
+ "loss": 0.2263,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 2.7804878048780486,
1603
+ "grad_norm": 2.4653515815734863,
1604
+ "learning_rate": 8.658067042479877e-06,
1605
+ "loss": 0.197,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 2.7926829268292686,
1610
+ "grad_norm": 2.4599173069000244,
1611
+ "learning_rate": 8.644290954086711e-06,
1612
+ "loss": 0.1995,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 2.8048780487804876,
1617
+ "grad_norm": 2.559979200363159,
1618
+ "learning_rate": 8.630455595371846e-06,
1619
+ "loss": 0.2138,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 2.817073170731707,
1624
+ "grad_norm": 2.173933267593384,
1625
+ "learning_rate": 8.616561191351934e-06,
1626
+ "loss": 0.1822,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 2.8292682926829267,
1631
+ "grad_norm": 2.4872312545776367,
1632
+ "learning_rate": 8.602607968003935e-06,
1633
+ "loss": 0.1805,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 2.841463414634146,
1638
+ "grad_norm": 2.255208730697632,
1639
+ "learning_rate": 8.588596152261447e-06,
1640
+ "loss": 0.1825,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 2.8536585365853657,
1645
+ "grad_norm": 2.602861166000366,
1646
+ "learning_rate": 8.574525972010997e-06,
1647
+ "loss": 0.2079,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 2.8658536585365852,
1652
+ "grad_norm": 2.6664066314697266,
1653
+ "learning_rate": 8.560397656088353e-06,
1654
+ "loss": 0.1909,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 2.8780487804878048,
1659
+ "grad_norm": 3.140064001083374,
1660
+ "learning_rate": 8.546211434274791e-06,
1661
+ "loss": 0.1985,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 2.8902439024390243,
1666
+ "grad_norm": 2.759251832962036,
1667
+ "learning_rate": 8.531967537293365e-06,
1668
+ "loss": 0.1862,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 2.902439024390244,
1673
+ "grad_norm": 2.6289727687835693,
1674
+ "learning_rate": 8.517666196805142e-06,
1675
+ "loss": 0.207,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 2.9146341463414633,
1680
+ "grad_norm": 2.671435594558716,
1681
+ "learning_rate": 8.503307645405461e-06,
1682
+ "loss": 0.2103,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 2.926829268292683,
1687
+ "grad_norm": 2.4491989612579346,
1688
+ "learning_rate": 8.488892116620114e-06,
1689
+ "loss": 0.2086,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 2.9390243902439024,
1694
+ "grad_norm": 2.1627562046051025,
1695
+ "learning_rate": 8.474419844901575e-06,
1696
+ "loss": 0.1785,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 2.951219512195122,
1701
+ "grad_norm": 2.683394432067871,
1702
+ "learning_rate": 8.459891065625184e-06,
1703
+ "loss": 0.2746,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 2.9634146341463414,
1708
+ "grad_norm": 2.3977043628692627,
1709
+ "learning_rate": 8.445306015085301e-06,
1710
+ "loss": 0.2042,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 2.975609756097561,
1715
+ "grad_norm": 2.0520613193511963,
1716
+ "learning_rate": 8.430664930491485e-06,
1717
+ "loss": 0.1897,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 2.9878048780487805,
1722
+ "grad_norm": 2.36509370803833,
1723
+ "learning_rate": 8.415968049964623e-06,
1724
+ "loss": 0.1859,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 3.0,
1729
+ "grad_norm": 2.167886257171631,
1730
+ "learning_rate": 8.401215612533056e-06,
1731
+ "loss": 0.1665,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 3.0121951219512195,
1736
+ "grad_norm": 1.8608198165893555,
1737
+ "learning_rate": 8.386407858128707e-06,
1738
+ "loss": 0.1037,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 3.024390243902439,
1743
+ "grad_norm": 1.8207582235336304,
1744
+ "learning_rate": 8.371545027583154e-06,
1745
+ "loss": 0.0807,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 3.0365853658536586,
1750
+ "grad_norm": 1.7909525632858276,
1751
+ "learning_rate": 8.356627362623742e-06,
1752
+ "loss": 0.0819,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 3.048780487804878,
1757
+ "grad_norm": 2.130682945251465,
1758
+ "learning_rate": 8.341655105869622e-06,
1759
+ "loss": 0.1154,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 3.0609756097560976,
1764
+ "grad_norm": 1.9704978466033936,
1765
+ "learning_rate": 8.326628500827826e-06,
1766
+ "loss": 0.0959,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 3.073170731707317,
1771
+ "grad_norm": 2.402252197265625,
1772
+ "learning_rate": 8.311547791889307e-06,
1773
+ "loss": 0.1006,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 3.0853658536585367,
1778
+ "grad_norm": 2.2904582023620605,
1779
+ "learning_rate": 8.296413224324944e-06,
1780
+ "loss": 0.0985,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 3.097560975609756,
1785
+ "grad_norm": 2.511240005493164,
1786
+ "learning_rate": 8.281225044281578e-06,
1787
+ "loss": 0.0695,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 3.1097560975609757,
1792
+ "grad_norm": 2.37315034866333,
1793
+ "learning_rate": 8.265983498777987e-06,
1794
+ "loss": 0.086,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 3.1219512195121952,
1799
+ "grad_norm": 2.4025444984436035,
1800
+ "learning_rate": 8.25068883570089e-06,
1801
+ "loss": 0.0877,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 3.1341463414634148,
1806
+ "grad_norm": 2.855544328689575,
1807
+ "learning_rate": 8.235341303800892e-06,
1808
+ "loss": 0.1104,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 3.1463414634146343,
1813
+ "grad_norm": 2.7334654331207275,
1814
+ "learning_rate": 8.219941152688459e-06,
1815
+ "loss": 0.0996,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 3.158536585365854,
1820
+ "grad_norm": 1.7848544120788574,
1821
+ "learning_rate": 8.204488632829848e-06,
1822
+ "loss": 0.0779,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 3.1707317073170733,
1827
+ "grad_norm": 2.5994298458099365,
1828
+ "learning_rate": 8.188983995543031e-06,
1829
+ "loss": 0.1027,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 3.182926829268293,
1834
+ "grad_norm": 2.1597657203674316,
1835
+ "learning_rate": 8.173427492993617e-06,
1836
+ "loss": 0.0974,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 3.1951219512195124,
1841
+ "grad_norm": 2.6595215797424316,
1842
+ "learning_rate": 8.157819378190743e-06,
1843
+ "loss": 0.1053,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 3.207317073170732,
1848
+ "grad_norm": 1.92975652217865,
1849
+ "learning_rate": 8.142159904982963e-06,
1850
+ "loss": 0.1003,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 3.2195121951219514,
1855
+ "grad_norm": 1.939504861831665,
1856
+ "learning_rate": 8.126449328054115e-06,
1857
+ "loss": 0.0948,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 3.231707317073171,
1862
+ "grad_norm": 2.238565444946289,
1863
+ "learning_rate": 8.110687902919185e-06,
1864
+ "loss": 0.1021,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 3.2439024390243905,
1869
+ "grad_norm": 2.1030704975128174,
1870
+ "learning_rate": 8.094875885920148e-06,
1871
+ "loss": 0.0961,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 3.2560975609756095,
1876
+ "grad_norm": 2.0035948753356934,
1877
+ "learning_rate": 8.079013534221798e-06,
1878
+ "loss": 0.0985,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 3.2682926829268295,
1883
+ "grad_norm": 2.1001100540161133,
1884
+ "learning_rate": 8.063101105807566e-06,
1885
+ "loss": 0.1089,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 3.2804878048780486,
1890
+ "grad_norm": 1.935497760772705,
1891
+ "learning_rate": 8.047138859475328e-06,
1892
+ "loss": 0.0882,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 3.292682926829268,
1897
+ "grad_norm": 2.4864578247070312,
1898
+ "learning_rate": 8.031127054833192e-06,
1899
+ "loss": 0.1085,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 3.3048780487804876,
1904
+ "grad_norm": 1.89180326461792,
1905
+ "learning_rate": 8.01506595229527e-06,
1906
+ "loss": 0.1096,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 3.317073170731707,
1911
+ "grad_norm": 2.166079521179199,
1912
+ "learning_rate": 7.998955813077457e-06,
1913
+ "loss": 0.0717,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 3.3292682926829267,
1918
+ "grad_norm": 2.1305079460144043,
1919
+ "learning_rate": 7.982796899193177e-06,
1920
+ "loss": 0.1042,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 3.341463414634146,
1925
+ "grad_norm": 2.0318334102630615,
1926
+ "learning_rate": 7.966589473449109e-06,
1927
+ "loss": 0.0943,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 3.3536585365853657,
1932
+ "grad_norm": 2.6421074867248535,
1933
+ "learning_rate": 7.95033379944093e-06,
1934
+ "loss": 0.1161,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 3.3658536585365852,
1939
+ "grad_norm": 2.3139538764953613,
1940
+ "learning_rate": 7.934030141549024e-06,
1941
+ "loss": 0.1219,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 3.3780487804878048,
1946
+ "grad_norm": 2.0743587017059326,
1947
+ "learning_rate": 7.917678764934169e-06,
1948
+ "loss": 0.1024,
1949
+ "step": 277
1950
+ },
1951
+ {
1952
+ "epoch": 3.3902439024390243,
1953
+ "grad_norm": 2.187187671661377,
1954
+ "learning_rate": 7.901279935533248e-06,
1955
+ "loss": 0.0864,
1956
+ "step": 278
1957
+ },
1958
+ {
1959
+ "epoch": 3.402439024390244,
1960
+ "grad_norm": 1.9640257358551025,
1961
+ "learning_rate": 7.8848339200549e-06,
1962
+ "loss": 0.0954,
1963
+ "step": 279
1964
+ },
1965
+ {
1966
+ "epoch": 3.4146341463414633,
1967
+ "grad_norm": 2.0996806621551514,
1968
+ "learning_rate": 7.868340985975195e-06,
1969
+ "loss": 0.0941,
1970
+ "step": 280
1971
+ },
1972
+ {
1973
+ "epoch": 3.426829268292683,
1974
+ "grad_norm": 2.0792341232299805,
1975
+ "learning_rate": 7.851801401533288e-06,
1976
+ "loss": 0.0908,
1977
+ "step": 281
1978
+ },
1979
+ {
1980
+ "epoch": 3.4390243902439024,
1981
+ "grad_norm": 2.0881197452545166,
1982
+ "learning_rate": 7.835215435727042e-06,
1983
+ "loss": 0.1059,
1984
+ "step": 282
1985
+ },
1986
+ {
1987
+ "epoch": 3.451219512195122,
1988
+ "grad_norm": 2.6827352046966553,
1989
+ "learning_rate": 7.818583358308664e-06,
1990
+ "loss": 0.1316,
1991
+ "step": 283
1992
+ },
1993
+ {
1994
+ "epoch": 3.4634146341463414,
1995
+ "grad_norm": 2.0524280071258545,
1996
+ "learning_rate": 7.801905439780317e-06,
1997
+ "loss": 0.0957,
1998
+ "step": 284
1999
+ },
2000
+ {
2001
+ "epoch": 3.475609756097561,
2002
+ "grad_norm": 2.184852361679077,
2003
+ "learning_rate": 7.785181951389718e-06,
2004
+ "loss": 0.1123,
2005
+ "step": 285
2006
+ },
2007
+ {
2008
+ "epoch": 3.4878048780487805,
2009
+ "grad_norm": 2.2295339107513428,
2010
+ "learning_rate": 7.76841316512572e-06,
2011
+ "loss": 0.1198,
2012
+ "step": 286
2013
+ },
2014
+ {
2015
+ "epoch": 3.5,
2016
+ "grad_norm": 2.101522922515869,
2017
+ "learning_rate": 7.751599353713906e-06,
2018
+ "loss": 0.0991,
2019
+ "step": 287
2020
+ },
2021
+ {
2022
+ "epoch": 3.5121951219512195,
2023
+ "grad_norm": 1.8743051290512085,
2024
+ "learning_rate": 7.734740790612137e-06,
2025
+ "loss": 0.0869,
2026
+ "step": 288
2027
+ },
2028
+ {
2029
+ "epoch": 3.524390243902439,
2030
+ "grad_norm": 1.9927822351455688,
2031
+ "learning_rate": 7.717837750006106e-06,
2032
+ "loss": 0.1094,
2033
+ "step": 289
2034
+ },
2035
+ {
2036
+ "epoch": 3.5365853658536586,
2037
+ "grad_norm": 2.079759359359741,
2038
+ "learning_rate": 7.700890506804895e-06,
2039
+ "loss": 0.1011,
2040
+ "step": 290
2041
+ },
2042
+ {
2043
+ "epoch": 3.548780487804878,
2044
+ "grad_norm": 2.3300259113311768,
2045
+ "learning_rate": 7.68389933663648e-06,
2046
+ "loss": 0.1374,
2047
+ "step": 291
2048
+ },
2049
+ {
2050
+ "epoch": 3.5609756097560976,
2051
+ "grad_norm": 2.1061301231384277,
2052
+ "learning_rate": 7.666864515843266e-06,
2053
+ "loss": 0.1123,
2054
+ "step": 292
2055
+ },
2056
+ {
2057
+ "epoch": 3.573170731707317,
2058
+ "grad_norm": 1.9325755834579468,
2059
+ "learning_rate": 7.649786321477585e-06,
2060
+ "loss": 0.1052,
2061
+ "step": 293
2062
+ },
2063
+ {
2064
+ "epoch": 3.5853658536585367,
2065
+ "grad_norm": 2.3022353649139404,
2066
+ "learning_rate": 7.632665031297193e-06,
2067
+ "loss": 0.102,
2068
+ "step": 294
2069
+ },
2070
+ {
2071
+ "epoch": 3.597560975609756,
2072
+ "grad_norm": 1.8938615322113037,
2073
+ "learning_rate": 7.615500923760748e-06,
2074
+ "loss": 0.1065,
2075
+ "step": 295
2076
+ },
2077
+ {
2078
+ "epoch": 3.6097560975609757,
2079
+ "grad_norm": 1.8526796102523804,
2080
+ "learning_rate": 7.59829427802329e-06,
2081
+ "loss": 0.0971,
2082
+ "step": 296
2083
+ },
2084
+ {
2085
+ "epoch": 3.6219512195121952,
2086
+ "grad_norm": 2.010892391204834,
2087
+ "learning_rate": 7.581045373931691e-06,
2088
+ "loss": 0.0932,
2089
+ "step": 297
2090
+ },
2091
+ {
2092
+ "epoch": 3.6341463414634148,
2093
+ "grad_norm": 2.140416383743286,
2094
+ "learning_rate": 7.563754492020108e-06,
2095
+ "loss": 0.0934,
2096
+ "step": 298
2097
+ },
2098
+ {
2099
+ "epoch": 3.6463414634146343,
2100
+ "grad_norm": 1.9991627931594849,
2101
+ "learning_rate": 7.54642191350542e-06,
2102
+ "loss": 0.1137,
2103
+ "step": 299
2104
+ },
2105
+ {
2106
+ "epoch": 3.658536585365854,
2107
+ "grad_norm": 1.98257577419281,
2108
+ "learning_rate": 7.5290479202826596e-06,
2109
+ "loss": 0.1058,
2110
+ "step": 300
2111
+ },
2112
+ {
2113
+ "epoch": 3.6707317073170733,
2114
+ "grad_norm": 1.9862565994262695,
2115
+ "learning_rate": 7.511632794920419e-06,
2116
+ "loss": 0.0977,
2117
+ "step": 301
2118
+ },
2119
+ {
2120
+ "epoch": 3.682926829268293,
2121
+ "grad_norm": 2.034688711166382,
2122
+ "learning_rate": 7.494176820656258e-06,
2123
+ "loss": 0.1248,
2124
+ "step": 302
2125
+ },
2126
+ {
2127
+ "epoch": 3.6951219512195124,
2128
+ "grad_norm": 1.8107631206512451,
2129
+ "learning_rate": 7.4766802813921016e-06,
2130
+ "loss": 0.0888,
2131
+ "step": 303
2132
+ },
2133
+ {
2134
+ "epoch": 3.7073170731707314,
2135
+ "grad_norm": 1.7797682285308838,
2136
+ "learning_rate": 7.4591434616896156e-06,
2137
+ "loss": 0.0971,
2138
+ "step": 304
2139
+ },
2140
+ {
2141
+ "epoch": 3.7195121951219514,
2142
+ "grad_norm": 1.8483872413635254,
2143
+ "learning_rate": 7.4415666467655835e-06,
2144
+ "loss": 0.1033,
2145
+ "step": 305
2146
+ },
2147
+ {
2148
+ "epoch": 3.7317073170731705,
2149
+ "grad_norm": 1.8434807062149048,
2150
+ "learning_rate": 7.423950122487269e-06,
2151
+ "loss": 0.0929,
2152
+ "step": 306
2153
+ },
2154
+ {
2155
+ "epoch": 3.7439024390243905,
2156
+ "grad_norm": 2.006572961807251,
2157
+ "learning_rate": 7.406294175367758e-06,
2158
+ "loss": 0.1034,
2159
+ "step": 307
2160
+ },
2161
+ {
2162
+ "epoch": 3.7560975609756095,
2163
+ "grad_norm": 2.015620708465576,
2164
+ "learning_rate": 7.388599092561315e-06,
2165
+ "loss": 0.1091,
2166
+ "step": 308
2167
+ },
2168
+ {
2169
+ "epoch": 3.7682926829268295,
2170
+ "grad_norm": 2.08795428276062,
2171
+ "learning_rate": 7.3708651618586925e-06,
2172
+ "loss": 0.0908,
2173
+ "step": 309
2174
+ },
2175
+ {
2176
+ "epoch": 3.7804878048780486,
2177
+ "grad_norm": 2.066549777984619,
2178
+ "learning_rate": 7.353092671682464e-06,
2179
+ "loss": 0.093,
2180
+ "step": 310
2181
+ },
2182
+ {
2183
+ "epoch": 3.7926829268292686,
2184
+ "grad_norm": 2.227687120437622,
2185
+ "learning_rate": 7.335281911082332e-06,
2186
+ "loss": 0.1042,
2187
+ "step": 311
2188
+ },
2189
+ {
2190
+ "epoch": 3.8048780487804876,
2191
+ "grad_norm": 2.5046164989471436,
2192
+ "learning_rate": 7.317433169730421e-06,
2193
+ "loss": 0.136,
2194
+ "step": 312
2195
+ },
2196
+ {
2197
+ "epoch": 3.817073170731707,
2198
+ "grad_norm": 2.0135955810546875,
2199
+ "learning_rate": 7.299546737916574e-06,
2200
+ "loss": 0.0942,
2201
+ "step": 313
2202
+ },
2203
+ {
2204
+ "epoch": 3.8292682926829267,
2205
+ "grad_norm": 2.3147573471069336,
2206
+ "learning_rate": 7.281622906543625e-06,
2207
+ "loss": 0.11,
2208
+ "step": 314
2209
+ },
2210
+ {
2211
+ "epoch": 3.841463414634146,
2212
+ "grad_norm": 2.515584707260132,
2213
+ "learning_rate": 7.26366196712267e-06,
2214
+ "loss": 0.1248,
2215
+ "step": 315
2216
+ },
2217
+ {
2218
+ "epoch": 3.8536585365853657,
2219
+ "grad_norm": 1.988805890083313,
2220
+ "learning_rate": 7.245664211768327e-06,
2221
+ "loss": 0.089,
2222
+ "step": 316
2223
+ },
2224
+ {
2225
+ "epoch": 3.8658536585365852,
2226
+ "grad_norm": 2.0414860248565674,
2227
+ "learning_rate": 7.227629933193983e-06,
2228
+ "loss": 0.0991,
2229
+ "step": 317
2230
+ },
2231
+ {
2232
+ "epoch": 3.8780487804878048,
2233
+ "grad_norm": 1.9820183515548706,
2234
+ "learning_rate": 7.209559424707034e-06,
2235
+ "loss": 0.1163,
2236
+ "step": 318
2237
+ },
2238
+ {
2239
+ "epoch": 3.8902439024390243,
2240
+ "grad_norm": 1.9290958642959595,
2241
+ "learning_rate": 7.191452980204119e-06,
2242
+ "loss": 0.1201,
2243
+ "step": 319
2244
+ },
2245
+ {
2246
+ "epoch": 3.902439024390244,
2247
+ "grad_norm": 1.9230592250823975,
2248
+ "learning_rate": 7.173310894166328e-06,
2249
+ "loss": 0.1138,
2250
+ "step": 320
2251
+ },
2252
+ {
2253
+ "epoch": 3.9146341463414633,
2254
+ "grad_norm": 1.6345875263214111,
2255
+ "learning_rate": 7.155133461654429e-06,
2256
+ "loss": 0.0935,
2257
+ "step": 321
2258
+ },
2259
+ {
2260
+ "epoch": 3.926829268292683,
2261
+ "grad_norm": 1.9335048198699951,
2262
+ "learning_rate": 7.136920978304056e-06,
2263
+ "loss": 0.1031,
2264
+ "step": 322
2265
+ },
2266
+ {
2267
+ "epoch": 3.9390243902439024,
2268
+ "grad_norm": 1.7330572605133057,
2269
+ "learning_rate": 7.118673740320907e-06,
2270
+ "loss": 0.0945,
2271
+ "step": 323
2272
+ },
2273
+ {
2274
+ "epoch": 3.951219512195122,
2275
+ "grad_norm": 1.8825818300247192,
2276
+ "learning_rate": 7.10039204447593e-06,
2277
+ "loss": 0.0966,
2278
+ "step": 324
2279
+ },
2280
+ {
2281
+ "epoch": 3.9634146341463414,
2282
+ "grad_norm": 2.1690921783447266,
2283
+ "learning_rate": 7.082076188100483e-06,
2284
+ "loss": 0.1348,
2285
+ "step": 325
2286
+ },
2287
+ {
2288
+ "epoch": 3.975609756097561,
2289
+ "grad_norm": 2.1976025104522705,
2290
+ "learning_rate": 7.063726469081511e-06,
2291
+ "loss": 0.1046,
2292
+ "step": 326
2293
+ },
2294
+ {
2295
+ "epoch": 3.9878048780487805,
2296
+ "grad_norm": 2.0651566982269287,
2297
+ "learning_rate": 7.045343185856701e-06,
2298
+ "loss": 0.0848,
2299
+ "step": 327
2300
+ },
2301
+ {
2302
+ "epoch": 4.0,
2303
+ "grad_norm": 2.3218235969543457,
2304
+ "learning_rate": 7.026926637409615e-06,
2305
+ "loss": 0.1261,
2306
+ "step": 328
2307
+ },
2308
+ {
2309
+ "epoch": 4.012195121951219,
2310
+ "grad_norm": 1.517854928970337,
2311
+ "learning_rate": 7.008477123264849e-06,
2312
+ "loss": 0.0424,
2313
+ "step": 329
2314
+ },
2315
+ {
2316
+ "epoch": 4.024390243902439,
2317
+ "grad_norm": 1.6785979270935059,
2318
+ "learning_rate": 6.989994943483136e-06,
2319
+ "loss": 0.053,
2320
+ "step": 330
2321
+ },
2322
+ {
2323
+ "epoch": 4.036585365853658,
2324
+ "grad_norm": 1.0940113067626953,
2325
+ "learning_rate": 6.971480398656488e-06,
2326
+ "loss": 0.0347,
2327
+ "step": 331
2328
+ },
2329
+ {
2330
+ "epoch": 4.048780487804878,
2331
+ "grad_norm": 1.434532880783081,
2332
+ "learning_rate": 6.952933789903299e-06,
2333
+ "loss": 0.0468,
2334
+ "step": 332
2335
+ },
2336
+ {
2337
+ "epoch": 4.060975609756097,
2338
+ "grad_norm": 1.7367973327636719,
2339
+ "learning_rate": 6.93435541886344e-06,
2340
+ "loss": 0.0439,
2341
+ "step": 333
2342
+ },
2343
+ {
2344
+ "epoch": 4.073170731707317,
2345
+ "grad_norm": 1.4013808965682983,
2346
+ "learning_rate": 6.915745587693365e-06,
2347
+ "loss": 0.0341,
2348
+ "step": 334
2349
+ },
2350
+ {
2351
+ "epoch": 4.085365853658536,
2352
+ "grad_norm": 1.7729628086090088,
2353
+ "learning_rate": 6.89710459906119e-06,
2354
+ "loss": 0.0524,
2355
+ "step": 335
2356
+ },
2357
+ {
2358
+ "epoch": 4.097560975609756,
2359
+ "grad_norm": 1.8550630807876587,
2360
+ "learning_rate": 6.878432756141775e-06,
2361
+ "loss": 0.0559,
2362
+ "step": 336
2363
+ },
2364
+ {
2365
+ "epoch": 4.109756097560975,
2366
+ "grad_norm": 1.9048420190811157,
2367
+ "learning_rate": 6.8597303626117886e-06,
2368
+ "loss": 0.0567,
2369
+ "step": 337
2370
+ },
2371
+ {
2372
+ "epoch": 4.121951219512195,
2373
+ "grad_norm": 2.3313469886779785,
2374
+ "learning_rate": 6.8409977226447685e-06,
2375
+ "loss": 0.0589,
2376
+ "step": 338
2377
+ },
2378
+ {
2379
+ "epoch": 4.134146341463414,
2380
+ "grad_norm": 1.5067005157470703,
2381
+ "learning_rate": 6.822235140906183e-06,
2382
+ "loss": 0.0415,
2383
+ "step": 339
2384
+ },
2385
+ {
2386
+ "epoch": 4.146341463414634,
2387
+ "grad_norm": 1.7281876802444458,
2388
+ "learning_rate": 6.803442922548462e-06,
2389
+ "loss": 0.0491,
2390
+ "step": 340
2391
+ },
2392
+ {
2393
+ "epoch": 4.158536585365853,
2394
+ "grad_norm": 1.7764736413955688,
2395
+ "learning_rate": 6.784621373206051e-06,
2396
+ "loss": 0.049,
2397
+ "step": 341
2398
+ },
2399
+ {
2400
+ "epoch": 4.170731707317073,
2401
+ "grad_norm": 2.0232222080230713,
2402
+ "learning_rate": 6.765770798990423e-06,
2403
+ "loss": 0.0524,
2404
+ "step": 342
2405
+ },
2406
+ {
2407
+ "epoch": 4.182926829268292,
2408
+ "grad_norm": 1.9550089836120605,
2409
+ "learning_rate": 6.746891506485112e-06,
2410
+ "loss": 0.0526,
2411
+ "step": 343
2412
+ },
2413
+ {
2414
+ "epoch": 4.195121951219512,
2415
+ "grad_norm": 2.0394773483276367,
2416
+ "learning_rate": 6.727983802740723e-06,
2417
+ "loss": 0.0546,
2418
+ "step": 344
2419
+ },
2420
+ {
2421
+ "epoch": 4.2073170731707314,
2422
+ "grad_norm": 1.6590560674667358,
2423
+ "learning_rate": 6.709047995269939e-06,
2424
+ "loss": 0.0422,
2425
+ "step": 345
2426
+ },
2427
+ {
2428
+ "epoch": 4.219512195121951,
2429
+ "grad_norm": 1.8558006286621094,
2430
+ "learning_rate": 6.690084392042514e-06,
2431
+ "loss": 0.0518,
2432
+ "step": 346
2433
+ },
2434
+ {
2435
+ "epoch": 4.2317073170731705,
2436
+ "grad_norm": 1.2415188550949097,
2437
+ "learning_rate": 6.671093301480276e-06,
2438
+ "loss": 0.0333,
2439
+ "step": 347
2440
+ },
2441
+ {
2442
+ "epoch": 4.2439024390243905,
2443
+ "grad_norm": 1.7380534410476685,
2444
+ "learning_rate": 6.6520750324520965e-06,
2445
+ "loss": 0.0556,
2446
+ "step": 348
2447
+ },
2448
+ {
2449
+ "epoch": 4.2560975609756095,
2450
+ "grad_norm": 1.4161667823791504,
2451
+ "learning_rate": 6.63302989426888e-06,
2452
+ "loss": 0.0414,
2453
+ "step": 349
2454
+ },
2455
+ {
2456
+ "epoch": 4.2682926829268295,
2457
+ "grad_norm": 1.6313724517822266,
2458
+ "learning_rate": 6.613958196678525e-06,
2459
+ "loss": 0.0757,
2460
+ "step": 350
2461
+ },
2462
+ {
2463
+ "epoch": 4.280487804878049,
2464
+ "grad_norm": 1.9501330852508545,
2465
+ "learning_rate": 6.594860249860888e-06,
2466
+ "loss": 0.0675,
2467
+ "step": 351
2468
+ },
2469
+ {
2470
+ "epoch": 4.2926829268292686,
2471
+ "grad_norm": 1.5222731828689575,
2472
+ "learning_rate": 6.575736364422747e-06,
2473
+ "loss": 0.0537,
2474
+ "step": 352
2475
+ },
2476
+ {
2477
+ "epoch": 4.304878048780488,
2478
+ "grad_norm": 1.367255687713623,
2479
+ "learning_rate": 6.55658685139273e-06,
2480
+ "loss": 0.0459,
2481
+ "step": 353
2482
+ },
2483
+ {
2484
+ "epoch": 4.317073170731708,
2485
+ "grad_norm": 1.4813297986984253,
2486
+ "learning_rate": 6.5374120222162815e-06,
2487
+ "loss": 0.06,
2488
+ "step": 354
2489
+ },
2490
+ {
2491
+ "epoch": 4.329268292682927,
2492
+ "grad_norm": 1.5068612098693848,
2493
+ "learning_rate": 6.518212188750579e-06,
2494
+ "loss": 0.0514,
2495
+ "step": 355
2496
+ },
2497
+ {
2498
+ "epoch": 4.341463414634147,
2499
+ "grad_norm": 1.66206955909729,
2500
+ "learning_rate": 6.498987663259467e-06,
2501
+ "loss": 0.0675,
2502
+ "step": 356
2503
+ },
2504
+ {
2505
+ "epoch": 4.353658536585366,
2506
+ "grad_norm": 1.4990217685699463,
2507
+ "learning_rate": 6.479738758408379e-06,
2508
+ "loss": 0.0695,
2509
+ "step": 357
2510
+ },
2511
+ {
2512
+ "epoch": 4.365853658536586,
2513
+ "grad_norm": 1.5749341249465942,
2514
+ "learning_rate": 6.460465787259251e-06,
2515
+ "loss": 0.0508,
2516
+ "step": 358
2517
+ },
2518
+ {
2519
+ "epoch": 4.378048780487805,
2520
+ "grad_norm": 1.499898076057434,
2521
+ "learning_rate": 6.44116906326543e-06,
2522
+ "loss": 0.0591,
2523
+ "step": 359
2524
+ },
2525
+ {
2526
+ "epoch": 4.390243902439025,
2527
+ "grad_norm": 1.46736478805542,
2528
+ "learning_rate": 6.421848900266581e-06,
2529
+ "loss": 0.05,
2530
+ "step": 360
2531
+ },
2532
+ {
2533
+ "epoch": 4.402439024390244,
2534
+ "grad_norm": 1.4807460308074951,
2535
+ "learning_rate": 6.402505612483569e-06,
2536
+ "loss": 0.0523,
2537
+ "step": 361
2538
+ },
2539
+ {
2540
+ "epoch": 4.414634146341464,
2541
+ "grad_norm": 1.4587833881378174,
2542
+ "learning_rate": 6.383139514513368e-06,
2543
+ "loss": 0.0576,
2544
+ "step": 362
2545
+ },
2546
+ {
2547
+ "epoch": 4.426829268292683,
2548
+ "grad_norm": 1.4291479587554932,
2549
+ "learning_rate": 6.363750921323929e-06,
2550
+ "loss": 0.0479,
2551
+ "step": 363
2552
+ },
2553
+ {
2554
+ "epoch": 4.439024390243903,
2555
+ "grad_norm": 1.364157795906067,
2556
+ "learning_rate": 6.3443401482490615e-06,
2557
+ "loss": 0.0528,
2558
+ "step": 364
2559
+ },
2560
+ {
2561
+ "epoch": 4.451219512195122,
2562
+ "grad_norm": 2.088580369949341,
2563
+ "learning_rate": 6.32490751098331e-06,
2564
+ "loss": 0.0605,
2565
+ "step": 365
2566
+ },
2567
+ {
2568
+ "epoch": 4.463414634146342,
2569
+ "grad_norm": 1.5994398593902588,
2570
+ "learning_rate": 6.30545332557681e-06,
2571
+ "loss": 0.0525,
2572
+ "step": 366
2573
+ },
2574
+ {
2575
+ "epoch": 4.475609756097561,
2576
+ "grad_norm": 1.7937228679656982,
2577
+ "learning_rate": 6.2859779084301584e-06,
2578
+ "loss": 0.0517,
2579
+ "step": 367
2580
+ },
2581
+ {
2582
+ "epoch": 4.487804878048781,
2583
+ "grad_norm": 1.3765718936920166,
2584
+ "learning_rate": 6.266481576289263e-06,
2585
+ "loss": 0.041,
2586
+ "step": 368
2587
+ },
2588
+ {
2589
+ "epoch": 4.5,
2590
+ "grad_norm": 1.7616742849349976,
2591
+ "learning_rate": 6.246964646240186e-06,
2592
+ "loss": 0.0715,
2593
+ "step": 369
2594
+ },
2595
+ {
2596
+ "epoch": 4.512195121951219,
2597
+ "grad_norm": 1.496747374534607,
2598
+ "learning_rate": 6.227427435703997e-06,
2599
+ "loss": 0.0633,
2600
+ "step": 370
2601
+ },
2602
+ {
2603
+ "epoch": 4.524390243902439,
2604
+ "grad_norm": 1.53587007522583,
2605
+ "learning_rate": 6.207870262431599e-06,
2606
+ "loss": 0.0557,
2607
+ "step": 371
2608
+ },
2609
+ {
2610
+ "epoch": 4.536585365853659,
2611
+ "grad_norm": 1.664995789527893,
2612
+ "learning_rate": 6.188293444498573e-06,
2613
+ "loss": 0.0599,
2614
+ "step": 372
2615
+ },
2616
+ {
2617
+ "epoch": 4.548780487804878,
2618
+ "grad_norm": 1.8567813634872437,
2619
+ "learning_rate": 6.1686973002999935e-06,
2620
+ "loss": 0.0643,
2621
+ "step": 373
2622
+ },
2623
+ {
2624
+ "epoch": 4.560975609756097,
2625
+ "grad_norm": 2.01507568359375,
2626
+ "learning_rate": 6.149082148545258e-06,
2627
+ "loss": 0.0637,
2628
+ "step": 374
2629
+ },
2630
+ {
2631
+ "epoch": 4.573170731707317,
2632
+ "grad_norm": 1.800641417503357,
2633
+ "learning_rate": 6.129448308252899e-06,
2634
+ "loss": 0.0587,
2635
+ "step": 375
2636
+ },
2637
+ {
2638
+ "epoch": 4.585365853658536,
2639
+ "grad_norm": 2.0126662254333496,
2640
+ "learning_rate": 6.109796098745398e-06,
2641
+ "loss": 0.0669,
2642
+ "step": 376
2643
+ },
2644
+ {
2645
+ "epoch": 4.597560975609756,
2646
+ "grad_norm": 1.8245577812194824,
2647
+ "learning_rate": 6.090125839643991e-06,
2648
+ "loss": 0.0541,
2649
+ "step": 377
2650
+ },
2651
+ {
2652
+ "epoch": 4.609756097560975,
2653
+ "grad_norm": 1.3531700372695923,
2654
+ "learning_rate": 6.070437850863472e-06,
2655
+ "loss": 0.0445,
2656
+ "step": 378
2657
+ },
2658
+ {
2659
+ "epoch": 4.621951219512195,
2660
+ "grad_norm": 1.9308772087097168,
2661
+ "learning_rate": 6.0507324526069854e-06,
2662
+ "loss": 0.0608,
2663
+ "step": 379
2664
+ },
2665
+ {
2666
+ "epoch": 4.634146341463414,
2667
+ "grad_norm": 1.5027072429656982,
2668
+ "learning_rate": 6.031009965360824e-06,
2669
+ "loss": 0.0634,
2670
+ "step": 380
2671
+ },
2672
+ {
2673
+ "epoch": 4.646341463414634,
2674
+ "grad_norm": 1.3451308012008667,
2675
+ "learning_rate": 6.011270709889213e-06,
2676
+ "loss": 0.0411,
2677
+ "step": 381
2678
+ },
2679
+ {
2680
+ "epoch": 4.658536585365853,
2681
+ "grad_norm": 1.618082046508789,
2682
+ "learning_rate": 5.991515007229093e-06,
2683
+ "loss": 0.0575,
2684
+ "step": 382
2685
+ },
2686
+ {
2687
+ "epoch": 4.670731707317073,
2688
+ "grad_norm": 1.6030172109603882,
2689
+ "learning_rate": 5.971743178684901e-06,
2690
+ "loss": 0.0575,
2691
+ "step": 383
2692
+ },
2693
+ {
2694
+ "epoch": 4.682926829268292,
2695
+ "grad_norm": 1.582740306854248,
2696
+ "learning_rate": 5.951955545823342e-06,
2697
+ "loss": 0.0613,
2698
+ "step": 384
2699
+ },
2700
+ {
2701
+ "epoch": 4.695121951219512,
2702
+ "grad_norm": 1.7536263465881348,
2703
+ "learning_rate": 5.932152430468165e-06,
2704
+ "loss": 0.052,
2705
+ "step": 385
2706
+ },
2707
+ {
2708
+ "epoch": 4.7073170731707314,
2709
+ "grad_norm": 2.1995296478271484,
2710
+ "learning_rate": 5.912334154694919e-06,
2711
+ "loss": 0.0629,
2712
+ "step": 386
2713
+ },
2714
+ {
2715
+ "epoch": 4.719512195121951,
2716
+ "grad_norm": 1.8581688404083252,
2717
+ "learning_rate": 5.892501040825721e-06,
2718
+ "loss": 0.041,
2719
+ "step": 387
2720
+ },
2721
+ {
2722
+ "epoch": 4.7317073170731705,
2723
+ "grad_norm": 1.8024824857711792,
2724
+ "learning_rate": 5.872653411424017e-06,
2725
+ "loss": 0.0708,
2726
+ "step": 388
2727
+ },
2728
+ {
2729
+ "epoch": 4.7439024390243905,
2730
+ "grad_norm": 1.7822990417480469,
2731
+ "learning_rate": 5.85279158928933e-06,
2732
+ "loss": 0.0528,
2733
+ "step": 389
2734
+ },
2735
+ {
2736
+ "epoch": 4.7560975609756095,
2737
+ "grad_norm": 1.9106731414794922,
2738
+ "learning_rate": 5.832915897452008e-06,
2739
+ "loss": 0.0643,
2740
+ "step": 390
2741
+ },
2742
+ {
2743
+ "epoch": 4.7682926829268295,
2744
+ "grad_norm": 1.593004584312439,
2745
+ "learning_rate": 5.813026659167982e-06,
2746
+ "loss": 0.054,
2747
+ "step": 391
2748
+ },
2749
+ {
2750
+ "epoch": 4.780487804878049,
2751
+ "grad_norm": 1.8973208665847778,
2752
+ "learning_rate": 5.793124197913492e-06,
2753
+ "loss": 0.0737,
2754
+ "step": 392
2755
+ },
2756
+ {
2757
+ "epoch": 4.7926829268292686,
2758
+ "grad_norm": 1.9966886043548584,
2759
+ "learning_rate": 5.773208837379843e-06,
2760
+ "loss": 0.0634,
2761
+ "step": 393
2762
+ },
2763
+ {
2764
+ "epoch": 4.804878048780488,
2765
+ "grad_norm": 1.5227646827697754,
2766
+ "learning_rate": 5.753280901468126e-06,
2767
+ "loss": 0.0496,
2768
+ "step": 394
2769
+ },
2770
+ {
2771
+ "epoch": 4.817073170731708,
2772
+ "grad_norm": 1.6435083150863647,
2773
+ "learning_rate": 5.733340714283959e-06,
2774
+ "loss": 0.0664,
2775
+ "step": 395
2776
+ },
2777
+ {
2778
+ "epoch": 4.829268292682927,
2779
+ "grad_norm": 1.3312773704528809,
2780
+ "learning_rate": 5.713388600132217e-06,
2781
+ "loss": 0.0534,
2782
+ "step": 396
2783
+ },
2784
+ {
2785
+ "epoch": 4.841463414634147,
2786
+ "grad_norm": 1.868194580078125,
2787
+ "learning_rate": 5.693424883511748e-06,
2788
+ "loss": 0.0565,
2789
+ "step": 397
2790
+ },
2791
+ {
2792
+ "epoch": 4.853658536585366,
2793
+ "grad_norm": 1.5551823377609253,
2794
+ "learning_rate": 5.6734498891101005e-06,
2795
+ "loss": 0.0604,
2796
+ "step": 398
2797
+ },
2798
+ {
2799
+ "epoch": 4.865853658536586,
2800
+ "grad_norm": 1.8578870296478271,
2801
+ "learning_rate": 5.653463941798252e-06,
2802
+ "loss": 0.0728,
2803
+ "step": 399
2804
+ },
2805
+ {
2806
+ "epoch": 4.878048780487805,
2807
+ "grad_norm": 1.5294170379638672,
2808
+ "learning_rate": 5.633467366625306e-06,
2809
+ "loss": 0.0637,
2810
+ "step": 400
2811
+ },
2812
+ {
2813
+ "epoch": 4.890243902439025,
2814
+ "grad_norm": 1.2593622207641602,
2815
+ "learning_rate": 5.613460488813225e-06,
2816
+ "loss": 0.0512,
2817
+ "step": 401
2818
+ },
2819
+ {
2820
+ "epoch": 4.902439024390244,
2821
+ "grad_norm": 1.7771371603012085,
2822
+ "learning_rate": 5.593443633751527e-06,
2823
+ "loss": 0.0658,
2824
+ "step": 402
2825
+ },
2826
+ {
2827
+ "epoch": 4.914634146341464,
2828
+ "grad_norm": 1.5825587511062622,
2829
+ "learning_rate": 5.573417126992004e-06,
2830
+ "loss": 0.0671,
2831
+ "step": 403
2832
+ },
2833
+ {
2834
+ "epoch": 4.926829268292683,
2835
+ "grad_norm": 1.6244094371795654,
2836
+ "learning_rate": 5.553381294243413e-06,
2837
+ "loss": 0.0585,
2838
+ "step": 404
2839
+ },
2840
+ {
2841
+ "epoch": 4.939024390243903,
2842
+ "grad_norm": 1.501323938369751,
2843
+ "learning_rate": 5.5333364613662e-06,
2844
+ "loss": 0.0578,
2845
+ "step": 405
2846
+ },
2847
+ {
2848
+ "epoch": 4.951219512195122,
2849
+ "grad_norm": 1.5930196046829224,
2850
+ "learning_rate": 5.513282954367179e-06,
2851
+ "loss": 0.064,
2852
+ "step": 406
2853
+ },
2854
+ {
2855
+ "epoch": 4.963414634146341,
2856
+ "grad_norm": 1.4195719957351685,
2857
+ "learning_rate": 5.493221099394239e-06,
2858
+ "loss": 0.0443,
2859
+ "step": 407
2860
+ },
2861
+ {
2862
+ "epoch": 4.975609756097561,
2863
+ "grad_norm": 1.3484866619110107,
2864
+ "learning_rate": 5.473151222731044e-06,
2865
+ "loss": 0.0577,
2866
+ "step": 408
2867
+ },
2868
+ {
2869
+ "epoch": 4.987804878048781,
2870
+ "grad_norm": 1.677027940750122,
2871
+ "learning_rate": 5.453073650791724e-06,
2872
+ "loss": 0.0604,
2873
+ "step": 409
2874
+ },
2875
+ {
2876
+ "epoch": 5.0,
2877
+ "grad_norm": 1.7022733688354492,
2878
+ "learning_rate": 5.432988710115553e-06,
2879
+ "loss": 0.0674,
2880
+ "step": 410
2881
+ }
2882
+ ],
2883
+ "logging_steps": 1,
2884
+ "max_steps": 820,
2885
+ "num_input_tokens_seen": 0,
2886
+ "num_train_epochs": 10,
2887
+ "save_steps": 1,
2888
+ "stateful_callbacks": {
2889
+ "TrainerControl": {
2890
+ "args": {
2891
+ "should_epoch_stop": false,
2892
+ "should_evaluate": false,
2893
+ "should_log": false,
2894
+ "should_save": true,
2895
+ "should_training_stop": false
2896
+ },
2897
+ "attributes": {}
2898
+ }
2899
+ },
2900
+ "total_flos": 7614453848064.0,
2901
+ "train_batch_size": 1,
2902
+ "trial_name": null,
2903
+ "trial_params": null
2904
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a595d3161ad6180acfe508fd460f880f6fd758b583ca0051c82b8999e011ac9
3
+ size 7313
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)