--- library_name: transformers license: gpl-3.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - generated_from_trainer datasets: - jaydenccc/AI_Storyteller_Dataset model-index: - name: models/Tiny_Llama_Storyteller results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.1.post1` ```yaml base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 batch_size: 4 bf16: auto datasets: - path: jaydenccc/AI_Storyteller_Dataset type: field_instruction: synopsis field_output: short_story field_system: system format: <|user|> {instruction} <|assistant|> no_input_format: <|user|> {instruction} <|assistant|> system_prompt: '' learning_rate: 0.0002 logging_steps: 1 micro_batch_size: 2 model_type: LlamaForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: ./models/Tiny_Llama_Storyteller sequence_length: 1024 tf32: false tokenizer_type: LlamaTokenizer ```

# models/Tiny_Llama_Storyteller This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the jaydenccc/AI_Storyteller_Dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1