---
library_name: transformers
license: gpl-3.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
datasets:
- jaydenccc/AI_Storyteller_Dataset
model-index:
- name: models/Tiny_Llama_Storyteller
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.9.1.post1`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
batch_size: 4
bf16: auto
datasets:
- path: jaydenccc/AI_Storyteller_Dataset
type:
field_instruction: synopsis
field_output: short_story
field_system: system
format: <|user|> {instruction} <|assistant|>
no_input_format: <|user|> {instruction} <|assistant|>
system_prompt: ''
learning_rate: 0.0002
logging_steps: 1
micro_batch_size: 2
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: ./models/Tiny_Llama_Storyteller
sequence_length: 1024
tf32: false
tokenizer_type: LlamaTokenizer
```
# models/Tiny_Llama_Storyteller
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the jaydenccc/AI_Storyteller_Dataset dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- num_epochs: 4.0
### Training results
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1