Arko007 commited on
Commit
a5c33ad
Β·
verified Β·
1 Parent(s): 280236c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: codellama/CodeLlama-7b-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:codellama/CodeLlama-7b-hf
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "target_parameters": null,
32
+ "task_type": "CAUSAL_LM",
33
+ "trainable_token_indices": null,
34
+ "use_dora": false,
35
+ "use_qalora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bdb8787bae35baf3d6e5b6d10ff2e190d61f0c3420b79d0e366b8ff26442ce9
3
+ size 33571624
checkpoint-3000/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: codellama/CodeLlama-7b-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:codellama/CodeLlama-7b-hf
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.0
checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "target_parameters": null,
32
+ "task_type": "CAUSAL_LM",
33
+ "trainable_token_indices": null,
34
+ "use_dora": false,
35
+ "use_qalora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9900d86cc37384c20cca70737b013b0928f50f5a9a3e33debef20f8f16e45c67
3
+ size 33571624
checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82f10377dc4eb3ae5240186c439bdb3e079b95339b5284f83dedf8e0e598ebb2
3
+ size 67217483
checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9531aeb35289b4611bac1121804eb79c967714334efb7bdabee8d481eb046a6a
3
+ size 14645
checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81df897721e400f5b5859df1fde7a94ac8ce530a536858379452822491946162
3
+ size 1465
checkpoint-3000/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "</s>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-3000/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3000/tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "clean_up_tokenization_spaces": false,
70
+ "eos_token": "</s>",
71
+ "eot_token": "▁<EOT>",
72
+ "extra_special_tokens": {},
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,2134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.96,
6
+ "eval_steps": 500,
7
+ "global_step": 3000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0032,
14
+ "grad_norm": 0.09734748303890228,
15
+ "learning_rate": 9.9712e-06,
16
+ "loss": 1.6245,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.0064,
21
+ "grad_norm": 0.0981544628739357,
22
+ "learning_rate": 9.939200000000001e-06,
23
+ "loss": 1.5375,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.0096,
28
+ "grad_norm": 0.09418202936649323,
29
+ "learning_rate": 9.9072e-06,
30
+ "loss": 1.5647,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.0128,
35
+ "grad_norm": 0.10748359560966492,
36
+ "learning_rate": 9.8752e-06,
37
+ "loss": 1.6781,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.016,
42
+ "grad_norm": 0.12658047676086426,
43
+ "learning_rate": 9.843200000000001e-06,
44
+ "loss": 1.5854,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.0192,
49
+ "grad_norm": 0.1334228664636612,
50
+ "learning_rate": 9.8112e-06,
51
+ "loss": 1.5453,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.0224,
56
+ "grad_norm": 0.15112873911857605,
57
+ "learning_rate": 9.779200000000001e-06,
58
+ "loss": 1.5721,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.0256,
63
+ "grad_norm": 0.140653595328331,
64
+ "learning_rate": 9.7472e-06,
65
+ "loss": 1.5162,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.0288,
70
+ "grad_norm": 0.16999679803848267,
71
+ "learning_rate": 9.715200000000001e-06,
72
+ "loss": 1.5689,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.032,
77
+ "grad_norm": 0.1928016096353531,
78
+ "learning_rate": 9.6832e-06,
79
+ "loss": 1.5845,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.0352,
84
+ "grad_norm": 0.19378426671028137,
85
+ "learning_rate": 9.6512e-06,
86
+ "loss": 1.5386,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.0384,
91
+ "grad_norm": 0.24590148031711578,
92
+ "learning_rate": 9.619200000000001e-06,
93
+ "loss": 1.4133,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.0416,
98
+ "grad_norm": 0.23824049532413483,
99
+ "learning_rate": 9.5872e-06,
100
+ "loss": 1.4573,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.0448,
105
+ "grad_norm": 0.19866596162319183,
106
+ "learning_rate": 9.555200000000001e-06,
107
+ "loss": 1.4357,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.048,
112
+ "grad_norm": 0.2909606993198395,
113
+ "learning_rate": 9.5232e-06,
114
+ "loss": 1.3924,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.0512,
119
+ "grad_norm": 0.48891496658325195,
120
+ "learning_rate": 9.4912e-06,
121
+ "loss": 1.4041,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.0544,
126
+ "grad_norm": 0.3921829164028168,
127
+ "learning_rate": 9.4592e-06,
128
+ "loss": 1.3158,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.0576,
133
+ "grad_norm": 0.293231338262558,
134
+ "learning_rate": 9.4272e-06,
135
+ "loss": 1.4709,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.0608,
140
+ "grad_norm": 0.27421411871910095,
141
+ "learning_rate": 9.395200000000001e-06,
142
+ "loss": 1.4046,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.064,
147
+ "grad_norm": 0.1971723437309265,
148
+ "learning_rate": 9.3632e-06,
149
+ "loss": 1.417,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.0672,
154
+ "grad_norm": 0.27423539757728577,
155
+ "learning_rate": 9.3312e-06,
156
+ "loss": 1.3721,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.0704,
161
+ "grad_norm": 0.4509432315826416,
162
+ "learning_rate": 9.2992e-06,
163
+ "loss": 1.4333,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.0736,
168
+ "grad_norm": 0.3389282822608948,
169
+ "learning_rate": 9.2672e-06,
170
+ "loss": 1.352,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.0768,
175
+ "grad_norm": 0.2814404368400574,
176
+ "learning_rate": 9.235200000000001e-06,
177
+ "loss": 1.3682,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 0.08,
182
+ "grad_norm": 0.2661599814891815,
183
+ "learning_rate": 9.2032e-06,
184
+ "loss": 1.3661,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 0.0832,
189
+ "grad_norm": 0.29006555676460266,
190
+ "learning_rate": 9.171200000000001e-06,
191
+ "loss": 1.299,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 0.0864,
196
+ "grad_norm": 0.2795925438404083,
197
+ "learning_rate": 9.1392e-06,
198
+ "loss": 1.3144,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 0.0896,
203
+ "grad_norm": 0.25778502225875854,
204
+ "learning_rate": 9.1072e-06,
205
+ "loss": 1.2957,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 0.0928,
210
+ "grad_norm": 0.26814839243888855,
211
+ "learning_rate": 9.0752e-06,
212
+ "loss": 1.3356,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 0.096,
217
+ "grad_norm": 0.3247470557689667,
218
+ "learning_rate": 9.0432e-06,
219
+ "loss": 1.3458,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 0.0992,
224
+ "grad_norm": 0.36921611428260803,
225
+ "learning_rate": 9.011200000000001e-06,
226
+ "loss": 1.3601,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 0.1024,
231
+ "grad_norm": 0.31122124195098877,
232
+ "learning_rate": 8.979200000000002e-06,
233
+ "loss": 1.3131,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 0.1056,
238
+ "grad_norm": 0.3557804822921753,
239
+ "learning_rate": 8.9472e-06,
240
+ "loss": 1.426,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 0.1088,
245
+ "grad_norm": 0.3266560137271881,
246
+ "learning_rate": 8.9152e-06,
247
+ "loss": 1.3386,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 0.112,
252
+ "grad_norm": 0.3932088017463684,
253
+ "learning_rate": 8.8832e-06,
254
+ "loss": 1.3982,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 0.1152,
259
+ "grad_norm": 0.32620078325271606,
260
+ "learning_rate": 8.851200000000001e-06,
261
+ "loss": 1.3048,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 0.1184,
266
+ "grad_norm": 0.30419647693634033,
267
+ "learning_rate": 8.819200000000002e-06,
268
+ "loss": 1.3761,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 0.1216,
273
+ "grad_norm": 0.29732590913772583,
274
+ "learning_rate": 8.7872e-06,
275
+ "loss": 1.2566,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 0.1248,
280
+ "grad_norm": 0.28484678268432617,
281
+ "learning_rate": 8.7552e-06,
282
+ "loss": 1.3666,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 0.128,
287
+ "grad_norm": 0.4168960154056549,
288
+ "learning_rate": 8.7232e-06,
289
+ "loss": 1.3396,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 0.1312,
294
+ "grad_norm": 0.3573697507381439,
295
+ "learning_rate": 8.6912e-06,
296
+ "loss": 1.3684,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 0.1344,
301
+ "grad_norm": 0.4777122735977173,
302
+ "learning_rate": 8.659200000000002e-06,
303
+ "loss": 1.3059,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 0.1376,
308
+ "grad_norm": 0.26450300216674805,
309
+ "learning_rate": 8.627200000000001e-06,
310
+ "loss": 1.3283,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 0.1408,
315
+ "grad_norm": 0.37447720766067505,
316
+ "learning_rate": 8.5952e-06,
317
+ "loss": 1.2667,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 0.144,
322
+ "grad_norm": 0.30257123708724976,
323
+ "learning_rate": 8.5632e-06,
324
+ "loss": 1.3147,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 0.1472,
329
+ "grad_norm": 0.34745684266090393,
330
+ "learning_rate": 8.5312e-06,
331
+ "loss": 1.3603,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 0.1504,
336
+ "grad_norm": 0.2882753312587738,
337
+ "learning_rate": 8.499200000000002e-06,
338
+ "loss": 1.3087,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 0.1536,
343
+ "grad_norm": 0.3751160204410553,
344
+ "learning_rate": 8.467200000000001e-06,
345
+ "loss": 1.342,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 0.1568,
350
+ "grad_norm": 0.3185778260231018,
351
+ "learning_rate": 8.435200000000002e-06,
352
+ "loss": 1.35,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 0.16,
357
+ "grad_norm": 0.2853422164916992,
358
+ "learning_rate": 8.4032e-06,
359
+ "loss": 1.3105,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 0.1632,
364
+ "grad_norm": 0.3187882602214813,
365
+ "learning_rate": 8.3712e-06,
366
+ "loss": 1.2915,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 0.1664,
371
+ "grad_norm": 0.4516860842704773,
372
+ "learning_rate": 8.339200000000001e-06,
373
+ "loss": 1.3449,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 0.1696,
378
+ "grad_norm": 0.3336597681045532,
379
+ "learning_rate": 8.3072e-06,
380
+ "loss": 1.2989,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 0.1728,
385
+ "grad_norm": 0.4279087781906128,
386
+ "learning_rate": 8.275200000000002e-06,
387
+ "loss": 1.2412,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 0.176,
392
+ "grad_norm": 0.4071614742279053,
393
+ "learning_rate": 8.243200000000001e-06,
394
+ "loss": 1.414,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 0.1792,
399
+ "grad_norm": 0.3194911479949951,
400
+ "learning_rate": 8.2112e-06,
401
+ "loss": 1.2762,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 0.1824,
406
+ "grad_norm": 0.3617415428161621,
407
+ "learning_rate": 8.179200000000001e-06,
408
+ "loss": 1.3225,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 0.1856,
413
+ "grad_norm": 0.3274191915988922,
414
+ "learning_rate": 8.1472e-06,
415
+ "loss": 1.3464,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 0.1888,
420
+ "grad_norm": 0.35526078939437866,
421
+ "learning_rate": 8.115200000000002e-06,
422
+ "loss": 1.315,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 0.192,
427
+ "grad_norm": 0.3728134036064148,
428
+ "learning_rate": 8.0832e-06,
429
+ "loss": 1.3023,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 0.1952,
434
+ "grad_norm": 0.4048090875148773,
435
+ "learning_rate": 8.0512e-06,
436
+ "loss": 1.2751,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 0.1984,
441
+ "grad_norm": 0.41539278626441956,
442
+ "learning_rate": 8.019200000000001e-06,
443
+ "loss": 1.3533,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 0.2016,
448
+ "grad_norm": 0.3269357979297638,
449
+ "learning_rate": 7.9872e-06,
450
+ "loss": 1.2709,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 0.2048,
455
+ "grad_norm": 0.3444967567920685,
456
+ "learning_rate": 7.955200000000001e-06,
457
+ "loss": 1.3119,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 0.208,
462
+ "grad_norm": 0.34097886085510254,
463
+ "learning_rate": 7.9232e-06,
464
+ "loss": 1.3444,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 0.2112,
469
+ "grad_norm": 0.42459428310394287,
470
+ "learning_rate": 7.891200000000002e-06,
471
+ "loss": 1.325,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 0.2144,
476
+ "grad_norm": 0.3942951261997223,
477
+ "learning_rate": 7.859200000000001e-06,
478
+ "loss": 1.3732,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 0.2176,
483
+ "grad_norm": 0.33468231558799744,
484
+ "learning_rate": 7.8272e-06,
485
+ "loss": 1.2883,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 0.2208,
490
+ "grad_norm": 0.3964150547981262,
491
+ "learning_rate": 7.795200000000001e-06,
492
+ "loss": 1.4014,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 0.224,
497
+ "grad_norm": 0.3447844386100769,
498
+ "learning_rate": 7.7632e-06,
499
+ "loss": 1.3205,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 0.2272,
504
+ "grad_norm": 0.380398154258728,
505
+ "learning_rate": 7.731200000000001e-06,
506
+ "loss": 1.2819,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 0.2304,
511
+ "grad_norm": 0.3823450207710266,
512
+ "learning_rate": 7.6992e-06,
513
+ "loss": 1.3097,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 0.2336,
518
+ "grad_norm": 0.3383599817752838,
519
+ "learning_rate": 7.6672e-06,
520
+ "loss": 1.346,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 0.2368,
525
+ "grad_norm": 0.39140060544013977,
526
+ "learning_rate": 7.635200000000001e-06,
527
+ "loss": 1.2961,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 0.24,
532
+ "grad_norm": 0.32159295678138733,
533
+ "learning_rate": 7.6032e-06,
534
+ "loss": 1.3045,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 0.2432,
539
+ "grad_norm": 0.3853408098220825,
540
+ "learning_rate": 7.5712000000000005e-06,
541
+ "loss": 1.2935,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 0.2464,
546
+ "grad_norm": 0.39150312542915344,
547
+ "learning_rate": 7.539200000000001e-06,
548
+ "loss": 1.2976,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 0.2496,
553
+ "grad_norm": 0.39306044578552246,
554
+ "learning_rate": 7.507200000000001e-06,
555
+ "loss": 1.2588,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 0.2528,
560
+ "grad_norm": 0.39256688952445984,
561
+ "learning_rate": 7.4752e-06,
562
+ "loss": 1.3252,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 0.256,
567
+ "grad_norm": 0.3738512098789215,
568
+ "learning_rate": 7.4432e-06,
569
+ "loss": 1.3162,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 0.2592,
574
+ "grad_norm": 0.4799080491065979,
575
+ "learning_rate": 7.4112e-06,
576
+ "loss": 1.2993,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 0.2624,
581
+ "grad_norm": 0.4616535007953644,
582
+ "learning_rate": 7.3792000000000004e-06,
583
+ "loss": 1.3356,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 0.2656,
588
+ "grad_norm": 0.37460416555404663,
589
+ "learning_rate": 7.347200000000001e-06,
590
+ "loss": 1.2938,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 0.2688,
595
+ "grad_norm": 0.4229544997215271,
596
+ "learning_rate": 7.3152e-06,
597
+ "loss": 1.26,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 0.272,
602
+ "grad_norm": 0.5051556825637817,
603
+ "learning_rate": 7.2832e-06,
604
+ "loss": 1.2868,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 0.2752,
609
+ "grad_norm": 0.3845407962799072,
610
+ "learning_rate": 7.2512e-06,
611
+ "loss": 1.3255,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 0.2784,
616
+ "grad_norm": 0.43234601616859436,
617
+ "learning_rate": 7.2192e-06,
618
+ "loss": 1.2756,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 0.2816,
623
+ "grad_norm": 0.390572190284729,
624
+ "learning_rate": 7.187200000000001e-06,
625
+ "loss": 1.3053,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 0.2848,
630
+ "grad_norm": 0.385815292596817,
631
+ "learning_rate": 7.155200000000001e-06,
632
+ "loss": 1.2608,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 0.288,
637
+ "grad_norm": 0.4778871238231659,
638
+ "learning_rate": 7.1232e-06,
639
+ "loss": 1.3109,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 0.2912,
644
+ "grad_norm": 0.3777396082878113,
645
+ "learning_rate": 7.0912e-06,
646
+ "loss": 1.2723,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 0.2944,
651
+ "grad_norm": 0.4682841897010803,
652
+ "learning_rate": 7.0592e-06,
653
+ "loss": 1.3304,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 0.2976,
658
+ "grad_norm": 0.3837222754955292,
659
+ "learning_rate": 7.027200000000001e-06,
660
+ "loss": 1.3081,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 0.3008,
665
+ "grad_norm": 0.3792935907840729,
666
+ "learning_rate": 6.995200000000001e-06,
667
+ "loss": 1.3176,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 0.304,
672
+ "grad_norm": 0.476096510887146,
673
+ "learning_rate": 6.963200000000001e-06,
674
+ "loss": 1.2764,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 0.3072,
679
+ "grad_norm": 0.4119466543197632,
680
+ "learning_rate": 6.9312e-06,
681
+ "loss": 1.3563,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 0.3104,
686
+ "grad_norm": 0.40938565135002136,
687
+ "learning_rate": 6.8992e-06,
688
+ "loss": 1.2782,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 0.3136,
693
+ "grad_norm": 0.4305261969566345,
694
+ "learning_rate": 6.867200000000001e-06,
695
+ "loss": 1.3333,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 0.3168,
700
+ "grad_norm": 0.3533143997192383,
701
+ "learning_rate": 6.835200000000001e-06,
702
+ "loss": 1.3686,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 0.32,
707
+ "grad_norm": 0.43104642629623413,
708
+ "learning_rate": 6.803200000000001e-06,
709
+ "loss": 1.3461,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 0.3232,
714
+ "grad_norm": 0.5197634696960449,
715
+ "learning_rate": 6.771200000000001e-06,
716
+ "loss": 1.3316,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 0.3264,
721
+ "grad_norm": 0.4084891080856323,
722
+ "learning_rate": 6.7392e-06,
723
+ "loss": 1.2941,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 0.3296,
728
+ "grad_norm": 0.4634837508201599,
729
+ "learning_rate": 6.707200000000001e-06,
730
+ "loss": 1.2982,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 0.3328,
735
+ "grad_norm": 0.4361494183540344,
736
+ "learning_rate": 6.675200000000001e-06,
737
+ "loss": 1.334,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 0.336,
742
+ "grad_norm": 0.36735212802886963,
743
+ "learning_rate": 6.643200000000001e-06,
744
+ "loss": 1.3642,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 0.3392,
749
+ "grad_norm": 0.3968944847583771,
750
+ "learning_rate": 6.611200000000001e-06,
751
+ "loss": 1.3784,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 0.3424,
756
+ "grad_norm": 0.39363133907318115,
757
+ "learning_rate": 6.5792e-06,
758
+ "loss": 1.2715,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 0.3456,
763
+ "grad_norm": 0.4664965867996216,
764
+ "learning_rate": 6.547200000000001e-06,
765
+ "loss": 1.3436,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 0.3488,
770
+ "grad_norm": 0.3857831358909607,
771
+ "learning_rate": 6.515200000000001e-06,
772
+ "loss": 1.3084,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 0.352,
777
+ "grad_norm": 0.41258570551872253,
778
+ "learning_rate": 6.483200000000001e-06,
779
+ "loss": 1.3288,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 0.3552,
784
+ "grad_norm": 0.3971725404262543,
785
+ "learning_rate": 6.451200000000001e-06,
786
+ "loss": 1.3321,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 0.3584,
791
+ "grad_norm": 0.3993317186832428,
792
+ "learning_rate": 6.419200000000001e-06,
793
+ "loss": 1.3385,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 0.3616,
798
+ "grad_norm": 0.5872831344604492,
799
+ "learning_rate": 6.3872000000000004e-06,
800
+ "loss": 1.2817,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 0.3648,
805
+ "grad_norm": 0.47822561860084534,
806
+ "learning_rate": 6.355200000000001e-06,
807
+ "loss": 1.3083,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 0.368,
812
+ "grad_norm": 0.5206847786903381,
813
+ "learning_rate": 6.323200000000001e-06,
814
+ "loss": 1.3457,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 0.3712,
819
+ "grad_norm": 0.41014567017555237,
820
+ "learning_rate": 6.291200000000001e-06,
821
+ "loss": 1.2687,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 0.3744,
826
+ "grad_norm": 0.39573901891708374,
827
+ "learning_rate": 6.259200000000001e-06,
828
+ "loss": 1.3257,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 0.3776,
833
+ "grad_norm": 0.40908557176589966,
834
+ "learning_rate": 6.227200000000001e-06,
835
+ "loss": 1.2587,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 0.3808,
840
+ "grad_norm": 0.4308335781097412,
841
+ "learning_rate": 6.1952e-06,
842
+ "loss": 1.2764,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 0.384,
847
+ "grad_norm": 0.41657981276512146,
848
+ "learning_rate": 6.1632000000000006e-06,
849
+ "loss": 1.3305,
850
+ "step": 1200
851
+ },
852
+ {
853
+ "epoch": 0.3872,
854
+ "grad_norm": 0.446154922246933,
855
+ "learning_rate": 6.131200000000001e-06,
856
+ "loss": 1.3323,
857
+ "step": 1210
858
+ },
859
+ {
860
+ "epoch": 0.3904,
861
+ "grad_norm": 0.43903544545173645,
862
+ "learning_rate": 6.099200000000001e-06,
863
+ "loss": 1.2731,
864
+ "step": 1220
865
+ },
866
+ {
867
+ "epoch": 0.3936,
868
+ "grad_norm": 0.4204481542110443,
869
+ "learning_rate": 6.067200000000001e-06,
870
+ "loss": 1.2569,
871
+ "step": 1230
872
+ },
873
+ {
874
+ "epoch": 0.3968,
875
+ "grad_norm": 0.4393060803413391,
876
+ "learning_rate": 6.0352e-06,
877
+ "loss": 1.3119,
878
+ "step": 1240
879
+ },
880
+ {
881
+ "epoch": 0.4,
882
+ "grad_norm": 0.42466068267822266,
883
+ "learning_rate": 6.0032e-06,
884
+ "loss": 1.2106,
885
+ "step": 1250
886
+ },
887
+ {
888
+ "epoch": 0.4032,
889
+ "grad_norm": 0.40182891488075256,
890
+ "learning_rate": 5.9712000000000005e-06,
891
+ "loss": 1.2566,
892
+ "step": 1260
893
+ },
894
+ {
895
+ "epoch": 0.4064,
896
+ "grad_norm": 0.3702845275402069,
897
+ "learning_rate": 5.939200000000001e-06,
898
+ "loss": 1.3344,
899
+ "step": 1270
900
+ },
901
+ {
902
+ "epoch": 0.4096,
903
+ "grad_norm": 0.4409834146499634,
904
+ "learning_rate": 5.907200000000001e-06,
905
+ "loss": 1.2553,
906
+ "step": 1280
907
+ },
908
+ {
909
+ "epoch": 0.4128,
910
+ "grad_norm": 0.5070372223854065,
911
+ "learning_rate": 5.875200000000001e-06,
912
+ "loss": 1.2901,
913
+ "step": 1290
914
+ },
915
+ {
916
+ "epoch": 0.416,
917
+ "grad_norm": 0.44239479303359985,
918
+ "learning_rate": 5.8432e-06,
919
+ "loss": 1.2086,
920
+ "step": 1300
921
+ },
922
+ {
923
+ "epoch": 0.4192,
924
+ "grad_norm": 0.5466510653495789,
925
+ "learning_rate": 5.8112e-06,
926
+ "loss": 1.2959,
927
+ "step": 1310
928
+ },
929
+ {
930
+ "epoch": 0.4224,
931
+ "grad_norm": 0.5056144595146179,
932
+ "learning_rate": 5.7792000000000005e-06,
933
+ "loss": 1.3353,
934
+ "step": 1320
935
+ },
936
+ {
937
+ "epoch": 0.4256,
938
+ "grad_norm": 0.42606833577156067,
939
+ "learning_rate": 5.747200000000001e-06,
940
+ "loss": 1.3108,
941
+ "step": 1330
942
+ },
943
+ {
944
+ "epoch": 0.4288,
945
+ "grad_norm": 0.41976213455200195,
946
+ "learning_rate": 5.715200000000001e-06,
947
+ "loss": 1.3248,
948
+ "step": 1340
949
+ },
950
+ {
951
+ "epoch": 0.432,
952
+ "grad_norm": 0.48559048771858215,
953
+ "learning_rate": 5.683200000000001e-06,
954
+ "loss": 1.2686,
955
+ "step": 1350
956
+ },
957
+ {
958
+ "epoch": 0.4352,
959
+ "grad_norm": 0.47761228680610657,
960
+ "learning_rate": 5.6512e-06,
961
+ "loss": 1.281,
962
+ "step": 1360
963
+ },
964
+ {
965
+ "epoch": 0.4384,
966
+ "grad_norm": 0.4777953028678894,
967
+ "learning_rate": 5.6192e-06,
968
+ "loss": 1.2829,
969
+ "step": 1370
970
+ },
971
+ {
972
+ "epoch": 0.4416,
973
+ "grad_norm": 0.44091978669166565,
974
+ "learning_rate": 5.5872000000000005e-06,
975
+ "loss": 1.3032,
976
+ "step": 1380
977
+ },
978
+ {
979
+ "epoch": 0.4448,
980
+ "grad_norm": 0.48977166414260864,
981
+ "learning_rate": 5.555200000000001e-06,
982
+ "loss": 1.3418,
983
+ "step": 1390
984
+ },
985
+ {
986
+ "epoch": 0.448,
987
+ "grad_norm": 0.6014530062675476,
988
+ "learning_rate": 5.523200000000001e-06,
989
+ "loss": 1.2119,
990
+ "step": 1400
991
+ },
992
+ {
993
+ "epoch": 0.4512,
994
+ "grad_norm": 0.4750172793865204,
995
+ "learning_rate": 5.491200000000001e-06,
996
+ "loss": 1.3432,
997
+ "step": 1410
998
+ },
999
+ {
1000
+ "epoch": 0.4544,
1001
+ "grad_norm": 0.5095167756080627,
1002
+ "learning_rate": 5.4592e-06,
1003
+ "loss": 1.3448,
1004
+ "step": 1420
1005
+ },
1006
+ {
1007
+ "epoch": 0.4576,
1008
+ "grad_norm": 0.47408685088157654,
1009
+ "learning_rate": 5.4272e-06,
1010
+ "loss": 1.3436,
1011
+ "step": 1430
1012
+ },
1013
+ {
1014
+ "epoch": 0.4608,
1015
+ "grad_norm": 0.45464885234832764,
1016
+ "learning_rate": 5.3952000000000005e-06,
1017
+ "loss": 1.1962,
1018
+ "step": 1440
1019
+ },
1020
+ {
1021
+ "epoch": 0.464,
1022
+ "grad_norm": 0.431349515914917,
1023
+ "learning_rate": 5.363200000000001e-06,
1024
+ "loss": 1.2773,
1025
+ "step": 1450
1026
+ },
1027
+ {
1028
+ "epoch": 0.4672,
1029
+ "grad_norm": 0.444397896528244,
1030
+ "learning_rate": 5.331200000000001e-06,
1031
+ "loss": 1.3163,
1032
+ "step": 1460
1033
+ },
1034
+ {
1035
+ "epoch": 0.4704,
1036
+ "grad_norm": 0.4360913038253784,
1037
+ "learning_rate": 5.2992e-06,
1038
+ "loss": 1.2759,
1039
+ "step": 1470
1040
+ },
1041
+ {
1042
+ "epoch": 0.4736,
1043
+ "grad_norm": 0.5152497887611389,
1044
+ "learning_rate": 5.2672e-06,
1045
+ "loss": 1.3225,
1046
+ "step": 1480
1047
+ },
1048
+ {
1049
+ "epoch": 0.4768,
1050
+ "grad_norm": 0.48929157853126526,
1051
+ "learning_rate": 5.2352e-06,
1052
+ "loss": 1.3213,
1053
+ "step": 1490
1054
+ },
1055
+ {
1056
+ "epoch": 0.48,
1057
+ "grad_norm": 0.4925262928009033,
1058
+ "learning_rate": 5.2032000000000004e-06,
1059
+ "loss": 1.2008,
1060
+ "step": 1500
1061
+ },
1062
+ {
1063
+ "epoch": 0.4832,
1064
+ "grad_norm": 0.46162164211273193,
1065
+ "learning_rate": 5.1712000000000006e-06,
1066
+ "loss": 1.2996,
1067
+ "step": 1510
1068
+ },
1069
+ {
1070
+ "epoch": 0.4864,
1071
+ "grad_norm": 0.4908200800418854,
1072
+ "learning_rate": 5.139200000000001e-06,
1073
+ "loss": 1.2729,
1074
+ "step": 1520
1075
+ },
1076
+ {
1077
+ "epoch": 0.4896,
1078
+ "grad_norm": 0.5178566575050354,
1079
+ "learning_rate": 5.1072e-06,
1080
+ "loss": 1.293,
1081
+ "step": 1530
1082
+ },
1083
+ {
1084
+ "epoch": 0.4928,
1085
+ "grad_norm": 0.5733951330184937,
1086
+ "learning_rate": 5.0752e-06,
1087
+ "loss": 1.3573,
1088
+ "step": 1540
1089
+ },
1090
+ {
1091
+ "epoch": 0.496,
1092
+ "grad_norm": 0.4558843672275543,
1093
+ "learning_rate": 5.0432e-06,
1094
+ "loss": 1.3445,
1095
+ "step": 1550
1096
+ },
1097
+ {
1098
+ "epoch": 0.4992,
1099
+ "grad_norm": 0.5171469449996948,
1100
+ "learning_rate": 5.0112e-06,
1101
+ "loss": 1.2293,
1102
+ "step": 1560
1103
+ },
1104
+ {
1105
+ "epoch": 0.5024,
1106
+ "grad_norm": 0.4879666864871979,
1107
+ "learning_rate": 4.9792000000000005e-06,
1108
+ "loss": 1.31,
1109
+ "step": 1570
1110
+ },
1111
+ {
1112
+ "epoch": 0.5056,
1113
+ "grad_norm": 0.4393675923347473,
1114
+ "learning_rate": 4.947200000000001e-06,
1115
+ "loss": 1.3186,
1116
+ "step": 1580
1117
+ },
1118
+ {
1119
+ "epoch": 0.5088,
1120
+ "grad_norm": 0.5072659254074097,
1121
+ "learning_rate": 4.915200000000001e-06,
1122
+ "loss": 1.2857,
1123
+ "step": 1590
1124
+ },
1125
+ {
1126
+ "epoch": 0.512,
1127
+ "grad_norm": 0.5163191556930542,
1128
+ "learning_rate": 4.8832e-06,
1129
+ "loss": 1.3401,
1130
+ "step": 1600
1131
+ },
1132
+ {
1133
+ "epoch": 0.5152,
1134
+ "grad_norm": 0.5119105577468872,
1135
+ "learning_rate": 4.8512e-06,
1136
+ "loss": 1.32,
1137
+ "step": 1610
1138
+ },
1139
+ {
1140
+ "epoch": 0.5184,
1141
+ "grad_norm": 0.5342932939529419,
1142
+ "learning_rate": 4.8192e-06,
1143
+ "loss": 1.206,
1144
+ "step": 1620
1145
+ },
1146
+ {
1147
+ "epoch": 0.5216,
1148
+ "grad_norm": 0.4517419636249542,
1149
+ "learning_rate": 4.7872000000000005e-06,
1150
+ "loss": 1.3077,
1151
+ "step": 1630
1152
+ },
1153
+ {
1154
+ "epoch": 0.5248,
1155
+ "grad_norm": 0.46141722798347473,
1156
+ "learning_rate": 4.755200000000001e-06,
1157
+ "loss": 1.2873,
1158
+ "step": 1640
1159
+ },
1160
+ {
1161
+ "epoch": 0.528,
1162
+ "grad_norm": 0.41747117042541504,
1163
+ "learning_rate": 4.723200000000001e-06,
1164
+ "loss": 1.2715,
1165
+ "step": 1650
1166
+ },
1167
+ {
1168
+ "epoch": 0.5312,
1169
+ "grad_norm": 0.48263996839523315,
1170
+ "learning_rate": 4.6912e-06,
1171
+ "loss": 1.2814,
1172
+ "step": 1660
1173
+ },
1174
+ {
1175
+ "epoch": 0.5344,
1176
+ "grad_norm": 0.4876611828804016,
1177
+ "learning_rate": 4.6592e-06,
1178
+ "loss": 1.2776,
1179
+ "step": 1670
1180
+ },
1181
+ {
1182
+ "epoch": 0.5376,
1183
+ "grad_norm": 0.46099624037742615,
1184
+ "learning_rate": 4.6272e-06,
1185
+ "loss": 1.3839,
1186
+ "step": 1680
1187
+ },
1188
+ {
1189
+ "epoch": 0.5408,
1190
+ "grad_norm": 0.46614623069763184,
1191
+ "learning_rate": 4.5952000000000005e-06,
1192
+ "loss": 1.2717,
1193
+ "step": 1690
1194
+ },
1195
+ {
1196
+ "epoch": 0.544,
1197
+ "grad_norm": 0.48747870326042175,
1198
+ "learning_rate": 4.563200000000001e-06,
1199
+ "loss": 1.2937,
1200
+ "step": 1700
1201
+ },
1202
+ {
1203
+ "epoch": 0.5472,
1204
+ "grad_norm": 0.5542135238647461,
1205
+ "learning_rate": 4.531200000000001e-06,
1206
+ "loss": 1.2622,
1207
+ "step": 1710
1208
+ },
1209
+ {
1210
+ "epoch": 0.5504,
1211
+ "grad_norm": 0.46008777618408203,
1212
+ "learning_rate": 4.4992e-06,
1213
+ "loss": 1.3188,
1214
+ "step": 1720
1215
+ },
1216
+ {
1217
+ "epoch": 0.5536,
1218
+ "grad_norm": 0.4853471517562866,
1219
+ "learning_rate": 4.4672e-06,
1220
+ "loss": 1.252,
1221
+ "step": 1730
1222
+ },
1223
+ {
1224
+ "epoch": 0.5568,
1225
+ "grad_norm": 0.44900670647621155,
1226
+ "learning_rate": 4.4352e-06,
1227
+ "loss": 1.2549,
1228
+ "step": 1740
1229
+ },
1230
+ {
1231
+ "epoch": 0.56,
1232
+ "grad_norm": 0.4973522126674652,
1233
+ "learning_rate": 4.4032000000000005e-06,
1234
+ "loss": 1.2959,
1235
+ "step": 1750
1236
+ },
1237
+ {
1238
+ "epoch": 0.5632,
1239
+ "grad_norm": 0.45412448048591614,
1240
+ "learning_rate": 4.371200000000001e-06,
1241
+ "loss": 1.2092,
1242
+ "step": 1760
1243
+ },
1244
+ {
1245
+ "epoch": 0.5664,
1246
+ "grad_norm": 0.5110604763031006,
1247
+ "learning_rate": 4.3392e-06,
1248
+ "loss": 1.3127,
1249
+ "step": 1770
1250
+ },
1251
+ {
1252
+ "epoch": 0.5696,
1253
+ "grad_norm": 0.5951307415962219,
1254
+ "learning_rate": 4.3072e-06,
1255
+ "loss": 1.2603,
1256
+ "step": 1780
1257
+ },
1258
+ {
1259
+ "epoch": 0.5728,
1260
+ "grad_norm": 0.49740588665008545,
1261
+ "learning_rate": 4.2752e-06,
1262
+ "loss": 1.2609,
1263
+ "step": 1790
1264
+ },
1265
+ {
1266
+ "epoch": 0.576,
1267
+ "grad_norm": 0.4803503155708313,
1268
+ "learning_rate": 4.2432e-06,
1269
+ "loss": 1.2287,
1270
+ "step": 1800
1271
+ },
1272
+ {
1273
+ "epoch": 0.5792,
1274
+ "grad_norm": 0.48638489842414856,
1275
+ "learning_rate": 4.2112000000000004e-06,
1276
+ "loss": 1.2245,
1277
+ "step": 1810
1278
+ },
1279
+ {
1280
+ "epoch": 0.5824,
1281
+ "grad_norm": 0.48148202896118164,
1282
+ "learning_rate": 4.179200000000001e-06,
1283
+ "loss": 1.2858,
1284
+ "step": 1820
1285
+ },
1286
+ {
1287
+ "epoch": 0.5856,
1288
+ "grad_norm": 0.5493887662887573,
1289
+ "learning_rate": 4.1472e-06,
1290
+ "loss": 1.2765,
1291
+ "step": 1830
1292
+ },
1293
+ {
1294
+ "epoch": 0.5888,
1295
+ "grad_norm": 0.45376092195510864,
1296
+ "learning_rate": 4.1152e-06,
1297
+ "loss": 1.1914,
1298
+ "step": 1840
1299
+ },
1300
+ {
1301
+ "epoch": 0.592,
1302
+ "grad_norm": 0.5095167756080627,
1303
+ "learning_rate": 4.0832e-06,
1304
+ "loss": 1.2916,
1305
+ "step": 1850
1306
+ },
1307
+ {
1308
+ "epoch": 0.5952,
1309
+ "grad_norm": 0.5425928831100464,
1310
+ "learning_rate": 4.0512e-06,
1311
+ "loss": 1.2189,
1312
+ "step": 1860
1313
+ },
1314
+ {
1315
+ "epoch": 0.5984,
1316
+ "grad_norm": 0.46790796518325806,
1317
+ "learning_rate": 4.0192e-06,
1318
+ "loss": 1.3668,
1319
+ "step": 1870
1320
+ },
1321
+ {
1322
+ "epoch": 0.6016,
1323
+ "grad_norm": 0.48903679847717285,
1324
+ "learning_rate": 3.9872000000000006e-06,
1325
+ "loss": 1.2132,
1326
+ "step": 1880
1327
+ },
1328
+ {
1329
+ "epoch": 0.6048,
1330
+ "grad_norm": 0.47461065649986267,
1331
+ "learning_rate": 3.9552e-06,
1332
+ "loss": 1.2794,
1333
+ "step": 1890
1334
+ },
1335
+ {
1336
+ "epoch": 0.608,
1337
+ "grad_norm": 0.4707651436328888,
1338
+ "learning_rate": 3.9232e-06,
1339
+ "loss": 1.3,
1340
+ "step": 1900
1341
+ },
1342
+ {
1343
+ "epoch": 0.6112,
1344
+ "grad_norm": 0.5604966878890991,
1345
+ "learning_rate": 3.8912e-06,
1346
+ "loss": 1.2272,
1347
+ "step": 1910
1348
+ },
1349
+ {
1350
+ "epoch": 0.6144,
1351
+ "grad_norm": 0.5373271107673645,
1352
+ "learning_rate": 3.8592e-06,
1353
+ "loss": 1.2522,
1354
+ "step": 1920
1355
+ },
1356
+ {
1357
+ "epoch": 0.6176,
1358
+ "grad_norm": 0.50235915184021,
1359
+ "learning_rate": 3.8272e-06,
1360
+ "loss": 1.2486,
1361
+ "step": 1930
1362
+ },
1363
+ {
1364
+ "epoch": 0.6208,
1365
+ "grad_norm": 0.4826876223087311,
1366
+ "learning_rate": 3.7952000000000005e-06,
1367
+ "loss": 1.3355,
1368
+ "step": 1940
1369
+ },
1370
+ {
1371
+ "epoch": 0.624,
1372
+ "grad_norm": 0.46976956725120544,
1373
+ "learning_rate": 3.7632000000000002e-06,
1374
+ "loss": 1.2725,
1375
+ "step": 1950
1376
+ },
1377
+ {
1378
+ "epoch": 0.6272,
1379
+ "grad_norm": 0.5186979174613953,
1380
+ "learning_rate": 3.7312000000000004e-06,
1381
+ "loss": 1.3073,
1382
+ "step": 1960
1383
+ },
1384
+ {
1385
+ "epoch": 0.6304,
1386
+ "grad_norm": 0.4939082860946655,
1387
+ "learning_rate": 3.6992000000000005e-06,
1388
+ "loss": 1.2649,
1389
+ "step": 1970
1390
+ },
1391
+ {
1392
+ "epoch": 0.6336,
1393
+ "grad_norm": 0.5091391205787659,
1394
+ "learning_rate": 3.6672000000000002e-06,
1395
+ "loss": 1.4142,
1396
+ "step": 1980
1397
+ },
1398
+ {
1399
+ "epoch": 0.6368,
1400
+ "grad_norm": 0.4665001928806305,
1401
+ "learning_rate": 3.6352000000000004e-06,
1402
+ "loss": 1.2606,
1403
+ "step": 1990
1404
+ },
1405
+ {
1406
+ "epoch": 0.64,
1407
+ "grad_norm": 0.48443859815597534,
1408
+ "learning_rate": 3.6032e-06,
1409
+ "loss": 1.1884,
1410
+ "step": 2000
1411
+ },
1412
+ {
1413
+ "epoch": 0.6432,
1414
+ "grad_norm": 0.5871022939682007,
1415
+ "learning_rate": 3.5712000000000002e-06,
1416
+ "loss": 1.3792,
1417
+ "step": 2010
1418
+ },
1419
+ {
1420
+ "epoch": 0.6464,
1421
+ "grad_norm": 0.48302605748176575,
1422
+ "learning_rate": 3.5392000000000004e-06,
1423
+ "loss": 1.262,
1424
+ "step": 2020
1425
+ },
1426
+ {
1427
+ "epoch": 0.6496,
1428
+ "grad_norm": 0.4569855034351349,
1429
+ "learning_rate": 3.5072e-06,
1430
+ "loss": 1.2587,
1431
+ "step": 2030
1432
+ },
1433
+ {
1434
+ "epoch": 0.6528,
1435
+ "grad_norm": 0.5194870829582214,
1436
+ "learning_rate": 3.4752e-06,
1437
+ "loss": 1.3056,
1438
+ "step": 2040
1439
+ },
1440
+ {
1441
+ "epoch": 0.656,
1442
+ "grad_norm": 0.4751642346382141,
1443
+ "learning_rate": 3.4432000000000003e-06,
1444
+ "loss": 1.1733,
1445
+ "step": 2050
1446
+ },
1447
+ {
1448
+ "epoch": 0.6592,
1449
+ "grad_norm": 0.5077437162399292,
1450
+ "learning_rate": 3.4112e-06,
1451
+ "loss": 1.3218,
1452
+ "step": 2060
1453
+ },
1454
+ {
1455
+ "epoch": 0.6624,
1456
+ "grad_norm": 0.49009519815444946,
1457
+ "learning_rate": 3.3792e-06,
1458
+ "loss": 1.224,
1459
+ "step": 2070
1460
+ },
1461
+ {
1462
+ "epoch": 0.6656,
1463
+ "grad_norm": 0.4634891152381897,
1464
+ "learning_rate": 3.3472000000000003e-06,
1465
+ "loss": 1.2727,
1466
+ "step": 2080
1467
+ },
1468
+ {
1469
+ "epoch": 0.6688,
1470
+ "grad_norm": 0.5274826884269714,
1471
+ "learning_rate": 3.3152e-06,
1472
+ "loss": 1.2916,
1473
+ "step": 2090
1474
+ },
1475
+ {
1476
+ "epoch": 0.672,
1477
+ "grad_norm": 0.5165941715240479,
1478
+ "learning_rate": 3.2832e-06,
1479
+ "loss": 1.2878,
1480
+ "step": 2100
1481
+ },
1482
+ {
1483
+ "epoch": 0.6752,
1484
+ "grad_norm": 0.5654541254043579,
1485
+ "learning_rate": 3.2512000000000003e-06,
1486
+ "loss": 1.2749,
1487
+ "step": 2110
1488
+ },
1489
+ {
1490
+ "epoch": 0.6784,
1491
+ "grad_norm": 0.49610668420791626,
1492
+ "learning_rate": 3.2192e-06,
1493
+ "loss": 1.2668,
1494
+ "step": 2120
1495
+ },
1496
+ {
1497
+ "epoch": 0.6816,
1498
+ "grad_norm": 0.5377901196479797,
1499
+ "learning_rate": 3.1872e-06,
1500
+ "loss": 1.2671,
1501
+ "step": 2130
1502
+ },
1503
+ {
1504
+ "epoch": 0.6848,
1505
+ "grad_norm": 0.5280618071556091,
1506
+ "learning_rate": 3.1552000000000003e-06,
1507
+ "loss": 1.2637,
1508
+ "step": 2140
1509
+ },
1510
+ {
1511
+ "epoch": 0.688,
1512
+ "grad_norm": 0.5266459584236145,
1513
+ "learning_rate": 3.1232e-06,
1514
+ "loss": 1.2604,
1515
+ "step": 2150
1516
+ },
1517
+ {
1518
+ "epoch": 0.6912,
1519
+ "grad_norm": 0.47189775109291077,
1520
+ "learning_rate": 3.0912e-06,
1521
+ "loss": 1.2546,
1522
+ "step": 2160
1523
+ },
1524
+ {
1525
+ "epoch": 0.6944,
1526
+ "grad_norm": 0.5069970488548279,
1527
+ "learning_rate": 3.0592000000000007e-06,
1528
+ "loss": 1.2538,
1529
+ "step": 2170
1530
+ },
1531
+ {
1532
+ "epoch": 0.6976,
1533
+ "grad_norm": 0.5452210903167725,
1534
+ "learning_rate": 3.0272e-06,
1535
+ "loss": 1.2896,
1536
+ "step": 2180
1537
+ },
1538
+ {
1539
+ "epoch": 0.7008,
1540
+ "grad_norm": 0.47197288274765015,
1541
+ "learning_rate": 2.9952e-06,
1542
+ "loss": 1.2104,
1543
+ "step": 2190
1544
+ },
1545
+ {
1546
+ "epoch": 0.704,
1547
+ "grad_norm": 0.5163410305976868,
1548
+ "learning_rate": 2.9632e-06,
1549
+ "loss": 1.2495,
1550
+ "step": 2200
1551
+ },
1552
+ {
1553
+ "epoch": 0.7072,
1554
+ "grad_norm": 0.4659384787082672,
1555
+ "learning_rate": 2.9312e-06,
1556
+ "loss": 1.226,
1557
+ "step": 2210
1558
+ },
1559
+ {
1560
+ "epoch": 0.7104,
1561
+ "grad_norm": 0.5424367189407349,
1562
+ "learning_rate": 2.8992000000000005e-06,
1563
+ "loss": 1.3475,
1564
+ "step": 2220
1565
+ },
1566
+ {
1567
+ "epoch": 0.7136,
1568
+ "grad_norm": 0.5033388137817383,
1569
+ "learning_rate": 2.8672e-06,
1570
+ "loss": 1.2415,
1571
+ "step": 2230
1572
+ },
1573
+ {
1574
+ "epoch": 0.7168,
1575
+ "grad_norm": 0.4847257733345032,
1576
+ "learning_rate": 2.8352e-06,
1577
+ "loss": 1.2562,
1578
+ "step": 2240
1579
+ },
1580
+ {
1581
+ "epoch": 0.72,
1582
+ "grad_norm": 0.5888292789459229,
1583
+ "learning_rate": 2.8032000000000005e-06,
1584
+ "loss": 1.3166,
1585
+ "step": 2250
1586
+ },
1587
+ {
1588
+ "epoch": 0.7232,
1589
+ "grad_norm": 0.5637612342834473,
1590
+ "learning_rate": 2.7712e-06,
1591
+ "loss": 1.2805,
1592
+ "step": 2260
1593
+ },
1594
+ {
1595
+ "epoch": 0.7264,
1596
+ "grad_norm": 0.477873831987381,
1597
+ "learning_rate": 2.7392000000000004e-06,
1598
+ "loss": 1.2804,
1599
+ "step": 2270
1600
+ },
1601
+ {
1602
+ "epoch": 0.7296,
1603
+ "grad_norm": 0.627713143825531,
1604
+ "learning_rate": 2.7072000000000005e-06,
1605
+ "loss": 1.2844,
1606
+ "step": 2280
1607
+ },
1608
+ {
1609
+ "epoch": 0.7328,
1610
+ "grad_norm": 0.5947350859642029,
1611
+ "learning_rate": 2.6752e-06,
1612
+ "loss": 1.28,
1613
+ "step": 2290
1614
+ },
1615
+ {
1616
+ "epoch": 0.736,
1617
+ "grad_norm": 0.49309098720550537,
1618
+ "learning_rate": 2.6432000000000004e-06,
1619
+ "loss": 1.353,
1620
+ "step": 2300
1621
+ },
1622
+ {
1623
+ "epoch": 0.7392,
1624
+ "grad_norm": 0.5657567381858826,
1625
+ "learning_rate": 2.6112000000000005e-06,
1626
+ "loss": 1.3422,
1627
+ "step": 2310
1628
+ },
1629
+ {
1630
+ "epoch": 0.7424,
1631
+ "grad_norm": 0.5906503200531006,
1632
+ "learning_rate": 2.5792000000000002e-06,
1633
+ "loss": 1.2691,
1634
+ "step": 2320
1635
+ },
1636
+ {
1637
+ "epoch": 0.7456,
1638
+ "grad_norm": 0.5093393325805664,
1639
+ "learning_rate": 2.5472000000000004e-06,
1640
+ "loss": 1.2689,
1641
+ "step": 2330
1642
+ },
1643
+ {
1644
+ "epoch": 0.7488,
1645
+ "grad_norm": 0.48354557156562805,
1646
+ "learning_rate": 2.5152000000000005e-06,
1647
+ "loss": 1.2062,
1648
+ "step": 2340
1649
+ },
1650
+ {
1651
+ "epoch": 0.752,
1652
+ "grad_norm": 0.6542074084281921,
1653
+ "learning_rate": 2.4832000000000002e-06,
1654
+ "loss": 1.2852,
1655
+ "step": 2350
1656
+ },
1657
+ {
1658
+ "epoch": 0.7552,
1659
+ "grad_norm": 0.5252315998077393,
1660
+ "learning_rate": 2.4512000000000003e-06,
1661
+ "loss": 1.2635,
1662
+ "step": 2360
1663
+ },
1664
+ {
1665
+ "epoch": 0.7584,
1666
+ "grad_norm": 0.48583582043647766,
1667
+ "learning_rate": 2.4192e-06,
1668
+ "loss": 1.2096,
1669
+ "step": 2370
1670
+ },
1671
+ {
1672
+ "epoch": 0.7616,
1673
+ "grad_norm": 0.49642977118492126,
1674
+ "learning_rate": 2.3872e-06,
1675
+ "loss": 1.2424,
1676
+ "step": 2380
1677
+ },
1678
+ {
1679
+ "epoch": 0.7648,
1680
+ "grad_norm": 0.6025352478027344,
1681
+ "learning_rate": 2.3552000000000003e-06,
1682
+ "loss": 1.2992,
1683
+ "step": 2390
1684
+ },
1685
+ {
1686
+ "epoch": 0.768,
1687
+ "grad_norm": 0.5461027026176453,
1688
+ "learning_rate": 2.3232e-06,
1689
+ "loss": 1.2946,
1690
+ "step": 2400
1691
+ },
1692
+ {
1693
+ "epoch": 0.7712,
1694
+ "grad_norm": 0.6130191683769226,
1695
+ "learning_rate": 2.2912e-06,
1696
+ "loss": 1.2398,
1697
+ "step": 2410
1698
+ },
1699
+ {
1700
+ "epoch": 0.7744,
1701
+ "grad_norm": 0.6468284726142883,
1702
+ "learning_rate": 2.2592000000000003e-06,
1703
+ "loss": 1.3087,
1704
+ "step": 2420
1705
+ },
1706
+ {
1707
+ "epoch": 0.7776,
1708
+ "grad_norm": 0.6268571019172668,
1709
+ "learning_rate": 2.2272e-06,
1710
+ "loss": 1.1613,
1711
+ "step": 2430
1712
+ },
1713
+ {
1714
+ "epoch": 0.7808,
1715
+ "grad_norm": 0.7104691863059998,
1716
+ "learning_rate": 2.1952e-06,
1717
+ "loss": 1.27,
1718
+ "step": 2440
1719
+ },
1720
+ {
1721
+ "epoch": 0.784,
1722
+ "grad_norm": 0.4856204688549042,
1723
+ "learning_rate": 2.1632000000000003e-06,
1724
+ "loss": 1.2731,
1725
+ "step": 2450
1726
+ },
1727
+ {
1728
+ "epoch": 0.7872,
1729
+ "grad_norm": 0.5168479681015015,
1730
+ "learning_rate": 2.1312e-06,
1731
+ "loss": 1.3437,
1732
+ "step": 2460
1733
+ },
1734
+ {
1735
+ "epoch": 0.7904,
1736
+ "grad_norm": 0.659817636013031,
1737
+ "learning_rate": 2.0992e-06,
1738
+ "loss": 1.2839,
1739
+ "step": 2470
1740
+ },
1741
+ {
1742
+ "epoch": 0.7936,
1743
+ "grad_norm": 0.5834536552429199,
1744
+ "learning_rate": 2.0672e-06,
1745
+ "loss": 1.3048,
1746
+ "step": 2480
1747
+ },
1748
+ {
1749
+ "epoch": 0.7968,
1750
+ "grad_norm": 0.4839385151863098,
1751
+ "learning_rate": 2.0352000000000004e-06,
1752
+ "loss": 1.2803,
1753
+ "step": 2490
1754
+ },
1755
+ {
1756
+ "epoch": 0.8,
1757
+ "grad_norm": 0.588320255279541,
1758
+ "learning_rate": 2.0032e-06,
1759
+ "loss": 1.2276,
1760
+ "step": 2500
1761
+ },
1762
+ {
1763
+ "epoch": 0.8032,
1764
+ "grad_norm": 0.5608358383178711,
1765
+ "learning_rate": 1.9712e-06,
1766
+ "loss": 1.3644,
1767
+ "step": 2510
1768
+ },
1769
+ {
1770
+ "epoch": 0.8064,
1771
+ "grad_norm": 0.5970802903175354,
1772
+ "learning_rate": 1.9392000000000004e-06,
1773
+ "loss": 1.2919,
1774
+ "step": 2520
1775
+ },
1776
+ {
1777
+ "epoch": 0.8096,
1778
+ "grad_norm": 0.5823186039924622,
1779
+ "learning_rate": 1.9072000000000001e-06,
1780
+ "loss": 1.3033,
1781
+ "step": 2530
1782
+ },
1783
+ {
1784
+ "epoch": 0.8128,
1785
+ "grad_norm": 0.5669010281562805,
1786
+ "learning_rate": 1.8752e-06,
1787
+ "loss": 1.3379,
1788
+ "step": 2540
1789
+ },
1790
+ {
1791
+ "epoch": 0.816,
1792
+ "grad_norm": 0.5039373636245728,
1793
+ "learning_rate": 1.8432000000000002e-06,
1794
+ "loss": 1.2282,
1795
+ "step": 2550
1796
+ },
1797
+ {
1798
+ "epoch": 0.8192,
1799
+ "grad_norm": 0.5700042843818665,
1800
+ "learning_rate": 1.8112000000000001e-06,
1801
+ "loss": 1.2615,
1802
+ "step": 2560
1803
+ },
1804
+ {
1805
+ "epoch": 0.8224,
1806
+ "grad_norm": 0.5190805196762085,
1807
+ "learning_rate": 1.7792e-06,
1808
+ "loss": 1.2593,
1809
+ "step": 2570
1810
+ },
1811
+ {
1812
+ "epoch": 0.8256,
1813
+ "grad_norm": 0.5930772423744202,
1814
+ "learning_rate": 1.7472e-06,
1815
+ "loss": 1.2265,
1816
+ "step": 2580
1817
+ },
1818
+ {
1819
+ "epoch": 0.8288,
1820
+ "grad_norm": 0.5103446245193481,
1821
+ "learning_rate": 1.7152000000000001e-06,
1822
+ "loss": 1.2012,
1823
+ "step": 2590
1824
+ },
1825
+ {
1826
+ "epoch": 0.832,
1827
+ "grad_norm": 0.534788966178894,
1828
+ "learning_rate": 1.6832e-06,
1829
+ "loss": 1.2393,
1830
+ "step": 2600
1831
+ },
1832
+ {
1833
+ "epoch": 0.8352,
1834
+ "grad_norm": 0.572394609451294,
1835
+ "learning_rate": 1.6512e-06,
1836
+ "loss": 1.2876,
1837
+ "step": 2610
1838
+ },
1839
+ {
1840
+ "epoch": 0.8384,
1841
+ "grad_norm": 0.4987950623035431,
1842
+ "learning_rate": 1.6192000000000003e-06,
1843
+ "loss": 1.2783,
1844
+ "step": 2620
1845
+ },
1846
+ {
1847
+ "epoch": 0.8416,
1848
+ "grad_norm": 0.5138176083564758,
1849
+ "learning_rate": 1.5872e-06,
1850
+ "loss": 1.2559,
1851
+ "step": 2630
1852
+ },
1853
+ {
1854
+ "epoch": 0.8448,
1855
+ "grad_norm": 0.5693644881248474,
1856
+ "learning_rate": 1.5552e-06,
1857
+ "loss": 1.2599,
1858
+ "step": 2640
1859
+ },
1860
+ {
1861
+ "epoch": 0.848,
1862
+ "grad_norm": 0.6024214029312134,
1863
+ "learning_rate": 1.5232000000000003e-06,
1864
+ "loss": 1.3064,
1865
+ "step": 2650
1866
+ },
1867
+ {
1868
+ "epoch": 0.8512,
1869
+ "grad_norm": 0.5588571429252625,
1870
+ "learning_rate": 1.4912000000000002e-06,
1871
+ "loss": 1.2977,
1872
+ "step": 2660
1873
+ },
1874
+ {
1875
+ "epoch": 0.8544,
1876
+ "grad_norm": 0.5551236867904663,
1877
+ "learning_rate": 1.4592000000000001e-06,
1878
+ "loss": 1.3121,
1879
+ "step": 2670
1880
+ },
1881
+ {
1882
+ "epoch": 0.8576,
1883
+ "grad_norm": 0.5989100933074951,
1884
+ "learning_rate": 1.4272000000000003e-06,
1885
+ "loss": 1.2795,
1886
+ "step": 2680
1887
+ },
1888
+ {
1889
+ "epoch": 0.8608,
1890
+ "grad_norm": 0.6164664626121521,
1891
+ "learning_rate": 1.3952000000000002e-06,
1892
+ "loss": 1.3366,
1893
+ "step": 2690
1894
+ },
1895
+ {
1896
+ "epoch": 0.864,
1897
+ "grad_norm": 0.6146747469902039,
1898
+ "learning_rate": 1.3632000000000001e-06,
1899
+ "loss": 1.2494,
1900
+ "step": 2700
1901
+ },
1902
+ {
1903
+ "epoch": 0.8672,
1904
+ "grad_norm": 0.6117052435874939,
1905
+ "learning_rate": 1.3312e-06,
1906
+ "loss": 1.2398,
1907
+ "step": 2710
1908
+ },
1909
+ {
1910
+ "epoch": 0.8704,
1911
+ "grad_norm": 0.4775325655937195,
1912
+ "learning_rate": 1.2992000000000002e-06,
1913
+ "loss": 1.3065,
1914
+ "step": 2720
1915
+ },
1916
+ {
1917
+ "epoch": 0.8736,
1918
+ "grad_norm": 0.6605592966079712,
1919
+ "learning_rate": 1.2672000000000001e-06,
1920
+ "loss": 1.1719,
1921
+ "step": 2730
1922
+ },
1923
+ {
1924
+ "epoch": 0.8768,
1925
+ "grad_norm": 0.48634928464889526,
1926
+ "learning_rate": 1.2352e-06,
1927
+ "loss": 1.2774,
1928
+ "step": 2740
1929
+ },
1930
+ {
1931
+ "epoch": 0.88,
1932
+ "grad_norm": 0.6096370220184326,
1933
+ "learning_rate": 1.2032e-06,
1934
+ "loss": 1.3231,
1935
+ "step": 2750
1936
+ },
1937
+ {
1938
+ "epoch": 0.8832,
1939
+ "grad_norm": 0.5880251526832581,
1940
+ "learning_rate": 1.1712000000000001e-06,
1941
+ "loss": 1.2641,
1942
+ "step": 2760
1943
+ },
1944
+ {
1945
+ "epoch": 0.8864,
1946
+ "grad_norm": 0.5116971135139465,
1947
+ "learning_rate": 1.1392e-06,
1948
+ "loss": 1.2763,
1949
+ "step": 2770
1950
+ },
1951
+ {
1952
+ "epoch": 0.8896,
1953
+ "grad_norm": 0.6191303730010986,
1954
+ "learning_rate": 1.1072000000000002e-06,
1955
+ "loss": 1.2622,
1956
+ "step": 2780
1957
+ },
1958
+ {
1959
+ "epoch": 0.8928,
1960
+ "grad_norm": 0.5492941737174988,
1961
+ "learning_rate": 1.0752e-06,
1962
+ "loss": 1.3002,
1963
+ "step": 2790
1964
+ },
1965
+ {
1966
+ "epoch": 0.896,
1967
+ "grad_norm": 0.6216818690299988,
1968
+ "learning_rate": 1.0432e-06,
1969
+ "loss": 1.3222,
1970
+ "step": 2800
1971
+ },
1972
+ {
1973
+ "epoch": 0.8992,
1974
+ "grad_norm": 0.5383599400520325,
1975
+ "learning_rate": 1.0112000000000002e-06,
1976
+ "loss": 1.292,
1977
+ "step": 2810
1978
+ },
1979
+ {
1980
+ "epoch": 0.9024,
1981
+ "grad_norm": 0.5288344025611877,
1982
+ "learning_rate": 9.792e-07,
1983
+ "loss": 1.2895,
1984
+ "step": 2820
1985
+ },
1986
+ {
1987
+ "epoch": 0.9056,
1988
+ "grad_norm": 0.5043691396713257,
1989
+ "learning_rate": 9.472e-07,
1990
+ "loss": 1.2499,
1991
+ "step": 2830
1992
+ },
1993
+ {
1994
+ "epoch": 0.9088,
1995
+ "grad_norm": 0.5582976341247559,
1996
+ "learning_rate": 9.152000000000001e-07,
1997
+ "loss": 1.2986,
1998
+ "step": 2840
1999
+ },
2000
+ {
2001
+ "epoch": 0.912,
2002
+ "grad_norm": 0.5215420126914978,
2003
+ "learning_rate": 8.832000000000001e-07,
2004
+ "loss": 1.3142,
2005
+ "step": 2850
2006
+ },
2007
+ {
2008
+ "epoch": 0.9152,
2009
+ "grad_norm": 0.5378311276435852,
2010
+ "learning_rate": 8.512000000000001e-07,
2011
+ "loss": 1.2104,
2012
+ "step": 2860
2013
+ },
2014
+ {
2015
+ "epoch": 0.9184,
2016
+ "grad_norm": 0.5053496360778809,
2017
+ "learning_rate": 8.192000000000001e-07,
2018
+ "loss": 1.3056,
2019
+ "step": 2870
2020
+ },
2021
+ {
2022
+ "epoch": 0.9216,
2023
+ "grad_norm": 0.5381192564964294,
2024
+ "learning_rate": 7.872000000000001e-07,
2025
+ "loss": 1.3055,
2026
+ "step": 2880
2027
+ },
2028
+ {
2029
+ "epoch": 0.9248,
2030
+ "grad_norm": 0.6026363968849182,
2031
+ "learning_rate": 7.552000000000001e-07,
2032
+ "loss": 1.346,
2033
+ "step": 2890
2034
+ },
2035
+ {
2036
+ "epoch": 0.928,
2037
+ "grad_norm": 0.5687581896781921,
2038
+ "learning_rate": 7.232e-07,
2039
+ "loss": 1.3244,
2040
+ "step": 2900
2041
+ },
2042
+ {
2043
+ "epoch": 0.9312,
2044
+ "grad_norm": 0.5862733125686646,
2045
+ "learning_rate": 6.912e-07,
2046
+ "loss": 1.2806,
2047
+ "step": 2910
2048
+ },
2049
+ {
2050
+ "epoch": 0.9344,
2051
+ "grad_norm": 0.47303637862205505,
2052
+ "learning_rate": 6.592000000000001e-07,
2053
+ "loss": 1.2337,
2054
+ "step": 2920
2055
+ },
2056
+ {
2057
+ "epoch": 0.9376,
2058
+ "grad_norm": 0.509482741355896,
2059
+ "learning_rate": 6.272e-07,
2060
+ "loss": 1.2466,
2061
+ "step": 2930
2062
+ },
2063
+ {
2064
+ "epoch": 0.9408,
2065
+ "grad_norm": 0.5245184302330017,
2066
+ "learning_rate": 5.952e-07,
2067
+ "loss": 1.2577,
2068
+ "step": 2940
2069
+ },
2070
+ {
2071
+ "epoch": 0.944,
2072
+ "grad_norm": 0.7082109451293945,
2073
+ "learning_rate": 5.632000000000001e-07,
2074
+ "loss": 1.2272,
2075
+ "step": 2950
2076
+ },
2077
+ {
2078
+ "epoch": 0.9472,
2079
+ "grad_norm": 0.4797827899456024,
2080
+ "learning_rate": 5.312000000000001e-07,
2081
+ "loss": 1.3238,
2082
+ "step": 2960
2083
+ },
2084
+ {
2085
+ "epoch": 0.9504,
2086
+ "grad_norm": 0.5341638326644897,
2087
+ "learning_rate": 4.992e-07,
2088
+ "loss": 1.313,
2089
+ "step": 2970
2090
+ },
2091
+ {
2092
+ "epoch": 0.9536,
2093
+ "grad_norm": 0.5286096334457397,
2094
+ "learning_rate": 4.672e-07,
2095
+ "loss": 1.2538,
2096
+ "step": 2980
2097
+ },
2098
+ {
2099
+ "epoch": 0.9568,
2100
+ "grad_norm": 0.5771506428718567,
2101
+ "learning_rate": 4.352000000000001e-07,
2102
+ "loss": 1.2869,
2103
+ "step": 2990
2104
+ },
2105
+ {
2106
+ "epoch": 0.96,
2107
+ "grad_norm": 0.5290225744247437,
2108
+ "learning_rate": 4.0320000000000006e-07,
2109
+ "loss": 1.2882,
2110
+ "step": 3000
2111
+ }
2112
+ ],
2113
+ "logging_steps": 10,
2114
+ "max_steps": 3125,
2115
+ "num_input_tokens_seen": 0,
2116
+ "num_train_epochs": 1,
2117
+ "save_steps": 500,
2118
+ "stateful_callbacks": {
2119
+ "TrainerControl": {
2120
+ "args": {
2121
+ "should_epoch_stop": false,
2122
+ "should_evaluate": false,
2123
+ "should_log": false,
2124
+ "should_save": true,
2125
+ "should_training_stop": false
2126
+ },
2127
+ "attributes": {}
2128
+ }
2129
+ },
2130
+ "total_flos": 4.8776953724928e+17,
2131
+ "train_batch_size": 16,
2132
+ "trial_name": null,
2133
+ "trial_params": null
2134
+ }
checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f50bda178f37cda684cb4356d9d39f2f3b1715e2c678bf4e558b0eb08badced
3
+ size 5777
checkpoint-3125/README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: codellama/CodeLlama-7b-hf
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - base_model:adapter:codellama/CodeLlama-7b-hf
7
+ - lora
8
+ - transformers
9
+ ---
10
+
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+
24
+
25
+ - **Developed by:** [More Information Needed]
26
+ - **Funded by [optional]:** [More Information Needed]
27
+ - **Shared by [optional]:** [More Information Needed]
28
+ - **Model type:** [More Information Needed]
29
+ - **Language(s) (NLP):** [More Information Needed]
30
+ - **License:** [More Information Needed]
31
+ - **Finetuned from model [optional]:** [More Information Needed]
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** [More Information Needed]
38
+ - **Paper [optional]:** [More Information Needed]
39
+ - **Demo [optional]:** [More Information Needed]
40
+
41
+ ## Uses
42
+
43
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
+
45
+ ### Direct Use
46
+
47
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Downstream Use [optional]
52
+
53
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
+
55
+ [More Information Needed]
56
+
57
+ ### Out-of-Scope Use
58
+
59
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ## Bias, Risks, and Limitations
64
+
65
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Recommendations
70
+
71
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
+
73
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
+
75
+ ## How to Get Started with the Model
76
+
77
+ Use the code below to get started with the model.
78
+
79
+ [More Information Needed]
80
+
81
+ ## Training Details
82
+
83
+ ### Training Data
84
+
85
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
+
87
+ [More Information Needed]
88
+
89
+ ### Training Procedure
90
+
91
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
+
93
+ #### Preprocessing [optional]
94
+
95
+ [More Information Needed]
96
+
97
+
98
+ #### Training Hyperparameters
99
+
100
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
+
102
+ #### Speeds, Sizes, Times [optional]
103
+
104
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
+
106
+ [More Information Needed]
107
+
108
+ ## Evaluation
109
+
110
+ <!-- This section describes the evaluation protocols and provides the results. -->
111
+
112
+ ### Testing Data, Factors & Metrics
113
+
114
+ #### Testing Data
115
+
116
+ <!-- This should link to a Dataset Card if possible. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Factors
121
+
122
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
+
124
+ [More Information Needed]
125
+
126
+ #### Metrics
127
+
128
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
+
130
+ [More Information Needed]
131
+
132
+ ### Results
133
+
134
+ [More Information Needed]
135
+
136
+ #### Summary
137
+
138
+
139
+
140
+ ## Model Examination [optional]
141
+
142
+ <!-- Relevant interpretability work for the model goes here -->
143
+
144
+ [More Information Needed]
145
+
146
+ ## Environmental Impact
147
+
148
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
+
150
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
+
152
+ - **Hardware Type:** [More Information Needed]
153
+ - **Hours used:** [More Information Needed]
154
+ - **Cloud Provider:** [More Information Needed]
155
+ - **Compute Region:** [More Information Needed]
156
+ - **Carbon Emitted:** [More Information Needed]
157
+
158
+ ## Technical Specifications [optional]
159
+
160
+ ### Model Architecture and Objective
161
+
162
+ [More Information Needed]
163
+
164
+ ### Compute Infrastructure
165
+
166
+ [More Information Needed]
167
+
168
+ #### Hardware
169
+
170
+ [More Information Needed]
171
+
172
+ #### Software
173
+
174
+ [More Information Needed]
175
+
176
+ ## Citation [optional]
177
+
178
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
179
+
180
+ **BibTeX:**
181
+
182
+ [More Information Needed]
183
+
184
+ **APA:**
185
+
186
+ [More Information Needed]
187
+
188
+ ## Glossary [optional]
189
+
190
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
+
192
+ [More Information Needed]
193
+
194
+ ## More Information [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Authors [optional]
199
+
200
+ [More Information Needed]
201
+
202
+ ## Model Card Contact
203
+
204
+ [More Information Needed]
205
+ ### Framework versions
206
+
207
+ - PEFT 0.17.0
checkpoint-3125/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "codellama/CodeLlama-7b-hf",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "v_proj",
29
+ "q_proj"
30
+ ],
31
+ "target_parameters": null,
32
+ "task_type": "CAUSAL_LM",
33
+ "trainable_token_indices": null,
34
+ "use_dora": false,
35
+ "use_qalora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-3125/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bdb8787bae35baf3d6e5b6d10ff2e190d61f0c3420b79d0e366b8ff26442ce9
3
+ size 33571624
checkpoint-3125/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6eb99f50a94760afddd0257c62ecb8be5bde6d46363751f27a6a84b6a9f9d60
3
+ size 67217483
checkpoint-3125/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d724410ee161af9fdee45322926da8513ddd2c044ed95bb6a8a64e82766f95f7
3
+ size 14645
checkpoint-3125/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbc43a56529ddabec3bef15ca1258355d146a12c0d2dba8f048c1fa14b4c5115
3
+ size 1465
checkpoint-3125/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "</s>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-3125/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3125/tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "clean_up_tokenization_spaces": false,
70
+ "eos_token": "</s>",
71
+ "eot_token": "▁<EOT>",
72
+ "extra_special_tokens": {},
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
checkpoint-3125/trainer_state.json ADDED
@@ -0,0 +1,2218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 500,
7
+ "global_step": 3125,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0032,
14
+ "grad_norm": 0.09734748303890228,
15
+ "learning_rate": 9.9712e-06,
16
+ "loss": 1.6245,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.0064,
21
+ "grad_norm": 0.0981544628739357,
22
+ "learning_rate": 9.939200000000001e-06,
23
+ "loss": 1.5375,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.0096,
28
+ "grad_norm": 0.09418202936649323,
29
+ "learning_rate": 9.9072e-06,
30
+ "loss": 1.5647,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.0128,
35
+ "grad_norm": 0.10748359560966492,
36
+ "learning_rate": 9.8752e-06,
37
+ "loss": 1.6781,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.016,
42
+ "grad_norm": 0.12658047676086426,
43
+ "learning_rate": 9.843200000000001e-06,
44
+ "loss": 1.5854,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.0192,
49
+ "grad_norm": 0.1334228664636612,
50
+ "learning_rate": 9.8112e-06,
51
+ "loss": 1.5453,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.0224,
56
+ "grad_norm": 0.15112873911857605,
57
+ "learning_rate": 9.779200000000001e-06,
58
+ "loss": 1.5721,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.0256,
63
+ "grad_norm": 0.140653595328331,
64
+ "learning_rate": 9.7472e-06,
65
+ "loss": 1.5162,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.0288,
70
+ "grad_norm": 0.16999679803848267,
71
+ "learning_rate": 9.715200000000001e-06,
72
+ "loss": 1.5689,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.032,
77
+ "grad_norm": 0.1928016096353531,
78
+ "learning_rate": 9.6832e-06,
79
+ "loss": 1.5845,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.0352,
84
+ "grad_norm": 0.19378426671028137,
85
+ "learning_rate": 9.6512e-06,
86
+ "loss": 1.5386,
87
+ "step": 110
88
+ },
89
+ {
90
+ "epoch": 0.0384,
91
+ "grad_norm": 0.24590148031711578,
92
+ "learning_rate": 9.619200000000001e-06,
93
+ "loss": 1.4133,
94
+ "step": 120
95
+ },
96
+ {
97
+ "epoch": 0.0416,
98
+ "grad_norm": 0.23824049532413483,
99
+ "learning_rate": 9.5872e-06,
100
+ "loss": 1.4573,
101
+ "step": 130
102
+ },
103
+ {
104
+ "epoch": 0.0448,
105
+ "grad_norm": 0.19866596162319183,
106
+ "learning_rate": 9.555200000000001e-06,
107
+ "loss": 1.4357,
108
+ "step": 140
109
+ },
110
+ {
111
+ "epoch": 0.048,
112
+ "grad_norm": 0.2909606993198395,
113
+ "learning_rate": 9.5232e-06,
114
+ "loss": 1.3924,
115
+ "step": 150
116
+ },
117
+ {
118
+ "epoch": 0.0512,
119
+ "grad_norm": 0.48891496658325195,
120
+ "learning_rate": 9.4912e-06,
121
+ "loss": 1.4041,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 0.0544,
126
+ "grad_norm": 0.3921829164028168,
127
+ "learning_rate": 9.4592e-06,
128
+ "loss": 1.3158,
129
+ "step": 170
130
+ },
131
+ {
132
+ "epoch": 0.0576,
133
+ "grad_norm": 0.293231338262558,
134
+ "learning_rate": 9.4272e-06,
135
+ "loss": 1.4709,
136
+ "step": 180
137
+ },
138
+ {
139
+ "epoch": 0.0608,
140
+ "grad_norm": 0.27421411871910095,
141
+ "learning_rate": 9.395200000000001e-06,
142
+ "loss": 1.4046,
143
+ "step": 190
144
+ },
145
+ {
146
+ "epoch": 0.064,
147
+ "grad_norm": 0.1971723437309265,
148
+ "learning_rate": 9.3632e-06,
149
+ "loss": 1.417,
150
+ "step": 200
151
+ },
152
+ {
153
+ "epoch": 0.0672,
154
+ "grad_norm": 0.27423539757728577,
155
+ "learning_rate": 9.3312e-06,
156
+ "loss": 1.3721,
157
+ "step": 210
158
+ },
159
+ {
160
+ "epoch": 0.0704,
161
+ "grad_norm": 0.4509432315826416,
162
+ "learning_rate": 9.2992e-06,
163
+ "loss": 1.4333,
164
+ "step": 220
165
+ },
166
+ {
167
+ "epoch": 0.0736,
168
+ "grad_norm": 0.3389282822608948,
169
+ "learning_rate": 9.2672e-06,
170
+ "loss": 1.352,
171
+ "step": 230
172
+ },
173
+ {
174
+ "epoch": 0.0768,
175
+ "grad_norm": 0.2814404368400574,
176
+ "learning_rate": 9.235200000000001e-06,
177
+ "loss": 1.3682,
178
+ "step": 240
179
+ },
180
+ {
181
+ "epoch": 0.08,
182
+ "grad_norm": 0.2661599814891815,
183
+ "learning_rate": 9.2032e-06,
184
+ "loss": 1.3661,
185
+ "step": 250
186
+ },
187
+ {
188
+ "epoch": 0.0832,
189
+ "grad_norm": 0.29006555676460266,
190
+ "learning_rate": 9.171200000000001e-06,
191
+ "loss": 1.299,
192
+ "step": 260
193
+ },
194
+ {
195
+ "epoch": 0.0864,
196
+ "grad_norm": 0.2795925438404083,
197
+ "learning_rate": 9.1392e-06,
198
+ "loss": 1.3144,
199
+ "step": 270
200
+ },
201
+ {
202
+ "epoch": 0.0896,
203
+ "grad_norm": 0.25778502225875854,
204
+ "learning_rate": 9.1072e-06,
205
+ "loss": 1.2957,
206
+ "step": 280
207
+ },
208
+ {
209
+ "epoch": 0.0928,
210
+ "grad_norm": 0.26814839243888855,
211
+ "learning_rate": 9.0752e-06,
212
+ "loss": 1.3356,
213
+ "step": 290
214
+ },
215
+ {
216
+ "epoch": 0.096,
217
+ "grad_norm": 0.3247470557689667,
218
+ "learning_rate": 9.0432e-06,
219
+ "loss": 1.3458,
220
+ "step": 300
221
+ },
222
+ {
223
+ "epoch": 0.0992,
224
+ "grad_norm": 0.36921611428260803,
225
+ "learning_rate": 9.011200000000001e-06,
226
+ "loss": 1.3601,
227
+ "step": 310
228
+ },
229
+ {
230
+ "epoch": 0.1024,
231
+ "grad_norm": 0.31122124195098877,
232
+ "learning_rate": 8.979200000000002e-06,
233
+ "loss": 1.3131,
234
+ "step": 320
235
+ },
236
+ {
237
+ "epoch": 0.1056,
238
+ "grad_norm": 0.3557804822921753,
239
+ "learning_rate": 8.9472e-06,
240
+ "loss": 1.426,
241
+ "step": 330
242
+ },
243
+ {
244
+ "epoch": 0.1088,
245
+ "grad_norm": 0.3266560137271881,
246
+ "learning_rate": 8.9152e-06,
247
+ "loss": 1.3386,
248
+ "step": 340
249
+ },
250
+ {
251
+ "epoch": 0.112,
252
+ "grad_norm": 0.3932088017463684,
253
+ "learning_rate": 8.8832e-06,
254
+ "loss": 1.3982,
255
+ "step": 350
256
+ },
257
+ {
258
+ "epoch": 0.1152,
259
+ "grad_norm": 0.32620078325271606,
260
+ "learning_rate": 8.851200000000001e-06,
261
+ "loss": 1.3048,
262
+ "step": 360
263
+ },
264
+ {
265
+ "epoch": 0.1184,
266
+ "grad_norm": 0.30419647693634033,
267
+ "learning_rate": 8.819200000000002e-06,
268
+ "loss": 1.3761,
269
+ "step": 370
270
+ },
271
+ {
272
+ "epoch": 0.1216,
273
+ "grad_norm": 0.29732590913772583,
274
+ "learning_rate": 8.7872e-06,
275
+ "loss": 1.2566,
276
+ "step": 380
277
+ },
278
+ {
279
+ "epoch": 0.1248,
280
+ "grad_norm": 0.28484678268432617,
281
+ "learning_rate": 8.7552e-06,
282
+ "loss": 1.3666,
283
+ "step": 390
284
+ },
285
+ {
286
+ "epoch": 0.128,
287
+ "grad_norm": 0.4168960154056549,
288
+ "learning_rate": 8.7232e-06,
289
+ "loss": 1.3396,
290
+ "step": 400
291
+ },
292
+ {
293
+ "epoch": 0.1312,
294
+ "grad_norm": 0.3573697507381439,
295
+ "learning_rate": 8.6912e-06,
296
+ "loss": 1.3684,
297
+ "step": 410
298
+ },
299
+ {
300
+ "epoch": 0.1344,
301
+ "grad_norm": 0.4777122735977173,
302
+ "learning_rate": 8.659200000000002e-06,
303
+ "loss": 1.3059,
304
+ "step": 420
305
+ },
306
+ {
307
+ "epoch": 0.1376,
308
+ "grad_norm": 0.26450300216674805,
309
+ "learning_rate": 8.627200000000001e-06,
310
+ "loss": 1.3283,
311
+ "step": 430
312
+ },
313
+ {
314
+ "epoch": 0.1408,
315
+ "grad_norm": 0.37447720766067505,
316
+ "learning_rate": 8.5952e-06,
317
+ "loss": 1.2667,
318
+ "step": 440
319
+ },
320
+ {
321
+ "epoch": 0.144,
322
+ "grad_norm": 0.30257123708724976,
323
+ "learning_rate": 8.5632e-06,
324
+ "loss": 1.3147,
325
+ "step": 450
326
+ },
327
+ {
328
+ "epoch": 0.1472,
329
+ "grad_norm": 0.34745684266090393,
330
+ "learning_rate": 8.5312e-06,
331
+ "loss": 1.3603,
332
+ "step": 460
333
+ },
334
+ {
335
+ "epoch": 0.1504,
336
+ "grad_norm": 0.2882753312587738,
337
+ "learning_rate": 8.499200000000002e-06,
338
+ "loss": 1.3087,
339
+ "step": 470
340
+ },
341
+ {
342
+ "epoch": 0.1536,
343
+ "grad_norm": 0.3751160204410553,
344
+ "learning_rate": 8.467200000000001e-06,
345
+ "loss": 1.342,
346
+ "step": 480
347
+ },
348
+ {
349
+ "epoch": 0.1568,
350
+ "grad_norm": 0.3185778260231018,
351
+ "learning_rate": 8.435200000000002e-06,
352
+ "loss": 1.35,
353
+ "step": 490
354
+ },
355
+ {
356
+ "epoch": 0.16,
357
+ "grad_norm": 0.2853422164916992,
358
+ "learning_rate": 8.4032e-06,
359
+ "loss": 1.3105,
360
+ "step": 500
361
+ },
362
+ {
363
+ "epoch": 0.1632,
364
+ "grad_norm": 0.3187882602214813,
365
+ "learning_rate": 8.3712e-06,
366
+ "loss": 1.2915,
367
+ "step": 510
368
+ },
369
+ {
370
+ "epoch": 0.1664,
371
+ "grad_norm": 0.4516860842704773,
372
+ "learning_rate": 8.339200000000001e-06,
373
+ "loss": 1.3449,
374
+ "step": 520
375
+ },
376
+ {
377
+ "epoch": 0.1696,
378
+ "grad_norm": 0.3336597681045532,
379
+ "learning_rate": 8.3072e-06,
380
+ "loss": 1.2989,
381
+ "step": 530
382
+ },
383
+ {
384
+ "epoch": 0.1728,
385
+ "grad_norm": 0.4279087781906128,
386
+ "learning_rate": 8.275200000000002e-06,
387
+ "loss": 1.2412,
388
+ "step": 540
389
+ },
390
+ {
391
+ "epoch": 0.176,
392
+ "grad_norm": 0.4071614742279053,
393
+ "learning_rate": 8.243200000000001e-06,
394
+ "loss": 1.414,
395
+ "step": 550
396
+ },
397
+ {
398
+ "epoch": 0.1792,
399
+ "grad_norm": 0.3194911479949951,
400
+ "learning_rate": 8.2112e-06,
401
+ "loss": 1.2762,
402
+ "step": 560
403
+ },
404
+ {
405
+ "epoch": 0.1824,
406
+ "grad_norm": 0.3617415428161621,
407
+ "learning_rate": 8.179200000000001e-06,
408
+ "loss": 1.3225,
409
+ "step": 570
410
+ },
411
+ {
412
+ "epoch": 0.1856,
413
+ "grad_norm": 0.3274191915988922,
414
+ "learning_rate": 8.1472e-06,
415
+ "loss": 1.3464,
416
+ "step": 580
417
+ },
418
+ {
419
+ "epoch": 0.1888,
420
+ "grad_norm": 0.35526078939437866,
421
+ "learning_rate": 8.115200000000002e-06,
422
+ "loss": 1.315,
423
+ "step": 590
424
+ },
425
+ {
426
+ "epoch": 0.192,
427
+ "grad_norm": 0.3728134036064148,
428
+ "learning_rate": 8.0832e-06,
429
+ "loss": 1.3023,
430
+ "step": 600
431
+ },
432
+ {
433
+ "epoch": 0.1952,
434
+ "grad_norm": 0.4048090875148773,
435
+ "learning_rate": 8.0512e-06,
436
+ "loss": 1.2751,
437
+ "step": 610
438
+ },
439
+ {
440
+ "epoch": 0.1984,
441
+ "grad_norm": 0.41539278626441956,
442
+ "learning_rate": 8.019200000000001e-06,
443
+ "loss": 1.3533,
444
+ "step": 620
445
+ },
446
+ {
447
+ "epoch": 0.2016,
448
+ "grad_norm": 0.3269357979297638,
449
+ "learning_rate": 7.9872e-06,
450
+ "loss": 1.2709,
451
+ "step": 630
452
+ },
453
+ {
454
+ "epoch": 0.2048,
455
+ "grad_norm": 0.3444967567920685,
456
+ "learning_rate": 7.955200000000001e-06,
457
+ "loss": 1.3119,
458
+ "step": 640
459
+ },
460
+ {
461
+ "epoch": 0.208,
462
+ "grad_norm": 0.34097886085510254,
463
+ "learning_rate": 7.9232e-06,
464
+ "loss": 1.3444,
465
+ "step": 650
466
+ },
467
+ {
468
+ "epoch": 0.2112,
469
+ "grad_norm": 0.42459428310394287,
470
+ "learning_rate": 7.891200000000002e-06,
471
+ "loss": 1.325,
472
+ "step": 660
473
+ },
474
+ {
475
+ "epoch": 0.2144,
476
+ "grad_norm": 0.3942951261997223,
477
+ "learning_rate": 7.859200000000001e-06,
478
+ "loss": 1.3732,
479
+ "step": 670
480
+ },
481
+ {
482
+ "epoch": 0.2176,
483
+ "grad_norm": 0.33468231558799744,
484
+ "learning_rate": 7.8272e-06,
485
+ "loss": 1.2883,
486
+ "step": 680
487
+ },
488
+ {
489
+ "epoch": 0.2208,
490
+ "grad_norm": 0.3964150547981262,
491
+ "learning_rate": 7.795200000000001e-06,
492
+ "loss": 1.4014,
493
+ "step": 690
494
+ },
495
+ {
496
+ "epoch": 0.224,
497
+ "grad_norm": 0.3447844386100769,
498
+ "learning_rate": 7.7632e-06,
499
+ "loss": 1.3205,
500
+ "step": 700
501
+ },
502
+ {
503
+ "epoch": 0.2272,
504
+ "grad_norm": 0.380398154258728,
505
+ "learning_rate": 7.731200000000001e-06,
506
+ "loss": 1.2819,
507
+ "step": 710
508
+ },
509
+ {
510
+ "epoch": 0.2304,
511
+ "grad_norm": 0.3823450207710266,
512
+ "learning_rate": 7.6992e-06,
513
+ "loss": 1.3097,
514
+ "step": 720
515
+ },
516
+ {
517
+ "epoch": 0.2336,
518
+ "grad_norm": 0.3383599817752838,
519
+ "learning_rate": 7.6672e-06,
520
+ "loss": 1.346,
521
+ "step": 730
522
+ },
523
+ {
524
+ "epoch": 0.2368,
525
+ "grad_norm": 0.39140060544013977,
526
+ "learning_rate": 7.635200000000001e-06,
527
+ "loss": 1.2961,
528
+ "step": 740
529
+ },
530
+ {
531
+ "epoch": 0.24,
532
+ "grad_norm": 0.32159295678138733,
533
+ "learning_rate": 7.6032e-06,
534
+ "loss": 1.3045,
535
+ "step": 750
536
+ },
537
+ {
538
+ "epoch": 0.2432,
539
+ "grad_norm": 0.3853408098220825,
540
+ "learning_rate": 7.5712000000000005e-06,
541
+ "loss": 1.2935,
542
+ "step": 760
543
+ },
544
+ {
545
+ "epoch": 0.2464,
546
+ "grad_norm": 0.39150312542915344,
547
+ "learning_rate": 7.539200000000001e-06,
548
+ "loss": 1.2976,
549
+ "step": 770
550
+ },
551
+ {
552
+ "epoch": 0.2496,
553
+ "grad_norm": 0.39306044578552246,
554
+ "learning_rate": 7.507200000000001e-06,
555
+ "loss": 1.2588,
556
+ "step": 780
557
+ },
558
+ {
559
+ "epoch": 0.2528,
560
+ "grad_norm": 0.39256688952445984,
561
+ "learning_rate": 7.4752e-06,
562
+ "loss": 1.3252,
563
+ "step": 790
564
+ },
565
+ {
566
+ "epoch": 0.256,
567
+ "grad_norm": 0.3738512098789215,
568
+ "learning_rate": 7.4432e-06,
569
+ "loss": 1.3162,
570
+ "step": 800
571
+ },
572
+ {
573
+ "epoch": 0.2592,
574
+ "grad_norm": 0.4799080491065979,
575
+ "learning_rate": 7.4112e-06,
576
+ "loss": 1.2993,
577
+ "step": 810
578
+ },
579
+ {
580
+ "epoch": 0.2624,
581
+ "grad_norm": 0.4616535007953644,
582
+ "learning_rate": 7.3792000000000004e-06,
583
+ "loss": 1.3356,
584
+ "step": 820
585
+ },
586
+ {
587
+ "epoch": 0.2656,
588
+ "grad_norm": 0.37460416555404663,
589
+ "learning_rate": 7.347200000000001e-06,
590
+ "loss": 1.2938,
591
+ "step": 830
592
+ },
593
+ {
594
+ "epoch": 0.2688,
595
+ "grad_norm": 0.4229544997215271,
596
+ "learning_rate": 7.3152e-06,
597
+ "loss": 1.26,
598
+ "step": 840
599
+ },
600
+ {
601
+ "epoch": 0.272,
602
+ "grad_norm": 0.5051556825637817,
603
+ "learning_rate": 7.2832e-06,
604
+ "loss": 1.2868,
605
+ "step": 850
606
+ },
607
+ {
608
+ "epoch": 0.2752,
609
+ "grad_norm": 0.3845407962799072,
610
+ "learning_rate": 7.2512e-06,
611
+ "loss": 1.3255,
612
+ "step": 860
613
+ },
614
+ {
615
+ "epoch": 0.2784,
616
+ "grad_norm": 0.43234601616859436,
617
+ "learning_rate": 7.2192e-06,
618
+ "loss": 1.2756,
619
+ "step": 870
620
+ },
621
+ {
622
+ "epoch": 0.2816,
623
+ "grad_norm": 0.390572190284729,
624
+ "learning_rate": 7.187200000000001e-06,
625
+ "loss": 1.3053,
626
+ "step": 880
627
+ },
628
+ {
629
+ "epoch": 0.2848,
630
+ "grad_norm": 0.385815292596817,
631
+ "learning_rate": 7.155200000000001e-06,
632
+ "loss": 1.2608,
633
+ "step": 890
634
+ },
635
+ {
636
+ "epoch": 0.288,
637
+ "grad_norm": 0.4778871238231659,
638
+ "learning_rate": 7.1232e-06,
639
+ "loss": 1.3109,
640
+ "step": 900
641
+ },
642
+ {
643
+ "epoch": 0.2912,
644
+ "grad_norm": 0.3777396082878113,
645
+ "learning_rate": 7.0912e-06,
646
+ "loss": 1.2723,
647
+ "step": 910
648
+ },
649
+ {
650
+ "epoch": 0.2944,
651
+ "grad_norm": 0.4682841897010803,
652
+ "learning_rate": 7.0592e-06,
653
+ "loss": 1.3304,
654
+ "step": 920
655
+ },
656
+ {
657
+ "epoch": 0.2976,
658
+ "grad_norm": 0.3837222754955292,
659
+ "learning_rate": 7.027200000000001e-06,
660
+ "loss": 1.3081,
661
+ "step": 930
662
+ },
663
+ {
664
+ "epoch": 0.3008,
665
+ "grad_norm": 0.3792935907840729,
666
+ "learning_rate": 6.995200000000001e-06,
667
+ "loss": 1.3176,
668
+ "step": 940
669
+ },
670
+ {
671
+ "epoch": 0.304,
672
+ "grad_norm": 0.476096510887146,
673
+ "learning_rate": 6.963200000000001e-06,
674
+ "loss": 1.2764,
675
+ "step": 950
676
+ },
677
+ {
678
+ "epoch": 0.3072,
679
+ "grad_norm": 0.4119466543197632,
680
+ "learning_rate": 6.9312e-06,
681
+ "loss": 1.3563,
682
+ "step": 960
683
+ },
684
+ {
685
+ "epoch": 0.3104,
686
+ "grad_norm": 0.40938565135002136,
687
+ "learning_rate": 6.8992e-06,
688
+ "loss": 1.2782,
689
+ "step": 970
690
+ },
691
+ {
692
+ "epoch": 0.3136,
693
+ "grad_norm": 0.4305261969566345,
694
+ "learning_rate": 6.867200000000001e-06,
695
+ "loss": 1.3333,
696
+ "step": 980
697
+ },
698
+ {
699
+ "epoch": 0.3168,
700
+ "grad_norm": 0.3533143997192383,
701
+ "learning_rate": 6.835200000000001e-06,
702
+ "loss": 1.3686,
703
+ "step": 990
704
+ },
705
+ {
706
+ "epoch": 0.32,
707
+ "grad_norm": 0.43104642629623413,
708
+ "learning_rate": 6.803200000000001e-06,
709
+ "loss": 1.3461,
710
+ "step": 1000
711
+ },
712
+ {
713
+ "epoch": 0.3232,
714
+ "grad_norm": 0.5197634696960449,
715
+ "learning_rate": 6.771200000000001e-06,
716
+ "loss": 1.3316,
717
+ "step": 1010
718
+ },
719
+ {
720
+ "epoch": 0.3264,
721
+ "grad_norm": 0.4084891080856323,
722
+ "learning_rate": 6.7392e-06,
723
+ "loss": 1.2941,
724
+ "step": 1020
725
+ },
726
+ {
727
+ "epoch": 0.3296,
728
+ "grad_norm": 0.4634837508201599,
729
+ "learning_rate": 6.707200000000001e-06,
730
+ "loss": 1.2982,
731
+ "step": 1030
732
+ },
733
+ {
734
+ "epoch": 0.3328,
735
+ "grad_norm": 0.4361494183540344,
736
+ "learning_rate": 6.675200000000001e-06,
737
+ "loss": 1.334,
738
+ "step": 1040
739
+ },
740
+ {
741
+ "epoch": 0.336,
742
+ "grad_norm": 0.36735212802886963,
743
+ "learning_rate": 6.643200000000001e-06,
744
+ "loss": 1.3642,
745
+ "step": 1050
746
+ },
747
+ {
748
+ "epoch": 0.3392,
749
+ "grad_norm": 0.3968944847583771,
750
+ "learning_rate": 6.611200000000001e-06,
751
+ "loss": 1.3784,
752
+ "step": 1060
753
+ },
754
+ {
755
+ "epoch": 0.3424,
756
+ "grad_norm": 0.39363133907318115,
757
+ "learning_rate": 6.5792e-06,
758
+ "loss": 1.2715,
759
+ "step": 1070
760
+ },
761
+ {
762
+ "epoch": 0.3456,
763
+ "grad_norm": 0.4664965867996216,
764
+ "learning_rate": 6.547200000000001e-06,
765
+ "loss": 1.3436,
766
+ "step": 1080
767
+ },
768
+ {
769
+ "epoch": 0.3488,
770
+ "grad_norm": 0.3857831358909607,
771
+ "learning_rate": 6.515200000000001e-06,
772
+ "loss": 1.3084,
773
+ "step": 1090
774
+ },
775
+ {
776
+ "epoch": 0.352,
777
+ "grad_norm": 0.41258570551872253,
778
+ "learning_rate": 6.483200000000001e-06,
779
+ "loss": 1.3288,
780
+ "step": 1100
781
+ },
782
+ {
783
+ "epoch": 0.3552,
784
+ "grad_norm": 0.3971725404262543,
785
+ "learning_rate": 6.451200000000001e-06,
786
+ "loss": 1.3321,
787
+ "step": 1110
788
+ },
789
+ {
790
+ "epoch": 0.3584,
791
+ "grad_norm": 0.3993317186832428,
792
+ "learning_rate": 6.419200000000001e-06,
793
+ "loss": 1.3385,
794
+ "step": 1120
795
+ },
796
+ {
797
+ "epoch": 0.3616,
798
+ "grad_norm": 0.5872831344604492,
799
+ "learning_rate": 6.3872000000000004e-06,
800
+ "loss": 1.2817,
801
+ "step": 1130
802
+ },
803
+ {
804
+ "epoch": 0.3648,
805
+ "grad_norm": 0.47822561860084534,
806
+ "learning_rate": 6.355200000000001e-06,
807
+ "loss": 1.3083,
808
+ "step": 1140
809
+ },
810
+ {
811
+ "epoch": 0.368,
812
+ "grad_norm": 0.5206847786903381,
813
+ "learning_rate": 6.323200000000001e-06,
814
+ "loss": 1.3457,
815
+ "step": 1150
816
+ },
817
+ {
818
+ "epoch": 0.3712,
819
+ "grad_norm": 0.41014567017555237,
820
+ "learning_rate": 6.291200000000001e-06,
821
+ "loss": 1.2687,
822
+ "step": 1160
823
+ },
824
+ {
825
+ "epoch": 0.3744,
826
+ "grad_norm": 0.39573901891708374,
827
+ "learning_rate": 6.259200000000001e-06,
828
+ "loss": 1.3257,
829
+ "step": 1170
830
+ },
831
+ {
832
+ "epoch": 0.3776,
833
+ "grad_norm": 0.40908557176589966,
834
+ "learning_rate": 6.227200000000001e-06,
835
+ "loss": 1.2587,
836
+ "step": 1180
837
+ },
838
+ {
839
+ "epoch": 0.3808,
840
+ "grad_norm": 0.4308335781097412,
841
+ "learning_rate": 6.1952e-06,
842
+ "loss": 1.2764,
843
+ "step": 1190
844
+ },
845
+ {
846
+ "epoch": 0.384,
847
+ "grad_norm": 0.41657981276512146,
848
+ "learning_rate": 6.1632000000000006e-06,
849
+ "loss": 1.3305,
850
+ "step": 1200
851
+ },
852
+ {
853
+ "epoch": 0.3872,
854
+ "grad_norm": 0.446154922246933,
855
+ "learning_rate": 6.131200000000001e-06,
856
+ "loss": 1.3323,
857
+ "step": 1210
858
+ },
859
+ {
860
+ "epoch": 0.3904,
861
+ "grad_norm": 0.43903544545173645,
862
+ "learning_rate": 6.099200000000001e-06,
863
+ "loss": 1.2731,
864
+ "step": 1220
865
+ },
866
+ {
867
+ "epoch": 0.3936,
868
+ "grad_norm": 0.4204481542110443,
869
+ "learning_rate": 6.067200000000001e-06,
870
+ "loss": 1.2569,
871
+ "step": 1230
872
+ },
873
+ {
874
+ "epoch": 0.3968,
875
+ "grad_norm": 0.4393060803413391,
876
+ "learning_rate": 6.0352e-06,
877
+ "loss": 1.3119,
878
+ "step": 1240
879
+ },
880
+ {
881
+ "epoch": 0.4,
882
+ "grad_norm": 0.42466068267822266,
883
+ "learning_rate": 6.0032e-06,
884
+ "loss": 1.2106,
885
+ "step": 1250
886
+ },
887
+ {
888
+ "epoch": 0.4032,
889
+ "grad_norm": 0.40182891488075256,
890
+ "learning_rate": 5.9712000000000005e-06,
891
+ "loss": 1.2566,
892
+ "step": 1260
893
+ },
894
+ {
895
+ "epoch": 0.4064,
896
+ "grad_norm": 0.3702845275402069,
897
+ "learning_rate": 5.939200000000001e-06,
898
+ "loss": 1.3344,
899
+ "step": 1270
900
+ },
901
+ {
902
+ "epoch": 0.4096,
903
+ "grad_norm": 0.4409834146499634,
904
+ "learning_rate": 5.907200000000001e-06,
905
+ "loss": 1.2553,
906
+ "step": 1280
907
+ },
908
+ {
909
+ "epoch": 0.4128,
910
+ "grad_norm": 0.5070372223854065,
911
+ "learning_rate": 5.875200000000001e-06,
912
+ "loss": 1.2901,
913
+ "step": 1290
914
+ },
915
+ {
916
+ "epoch": 0.416,
917
+ "grad_norm": 0.44239479303359985,
918
+ "learning_rate": 5.8432e-06,
919
+ "loss": 1.2086,
920
+ "step": 1300
921
+ },
922
+ {
923
+ "epoch": 0.4192,
924
+ "grad_norm": 0.5466510653495789,
925
+ "learning_rate": 5.8112e-06,
926
+ "loss": 1.2959,
927
+ "step": 1310
928
+ },
929
+ {
930
+ "epoch": 0.4224,
931
+ "grad_norm": 0.5056144595146179,
932
+ "learning_rate": 5.7792000000000005e-06,
933
+ "loss": 1.3353,
934
+ "step": 1320
935
+ },
936
+ {
937
+ "epoch": 0.4256,
938
+ "grad_norm": 0.42606833577156067,
939
+ "learning_rate": 5.747200000000001e-06,
940
+ "loss": 1.3108,
941
+ "step": 1330
942
+ },
943
+ {
944
+ "epoch": 0.4288,
945
+ "grad_norm": 0.41976213455200195,
946
+ "learning_rate": 5.715200000000001e-06,
947
+ "loss": 1.3248,
948
+ "step": 1340
949
+ },
950
+ {
951
+ "epoch": 0.432,
952
+ "grad_norm": 0.48559048771858215,
953
+ "learning_rate": 5.683200000000001e-06,
954
+ "loss": 1.2686,
955
+ "step": 1350
956
+ },
957
+ {
958
+ "epoch": 0.4352,
959
+ "grad_norm": 0.47761228680610657,
960
+ "learning_rate": 5.6512e-06,
961
+ "loss": 1.281,
962
+ "step": 1360
963
+ },
964
+ {
965
+ "epoch": 0.4384,
966
+ "grad_norm": 0.4777953028678894,
967
+ "learning_rate": 5.6192e-06,
968
+ "loss": 1.2829,
969
+ "step": 1370
970
+ },
971
+ {
972
+ "epoch": 0.4416,
973
+ "grad_norm": 0.44091978669166565,
974
+ "learning_rate": 5.5872000000000005e-06,
975
+ "loss": 1.3032,
976
+ "step": 1380
977
+ },
978
+ {
979
+ "epoch": 0.4448,
980
+ "grad_norm": 0.48977166414260864,
981
+ "learning_rate": 5.555200000000001e-06,
982
+ "loss": 1.3418,
983
+ "step": 1390
984
+ },
985
+ {
986
+ "epoch": 0.448,
987
+ "grad_norm": 0.6014530062675476,
988
+ "learning_rate": 5.523200000000001e-06,
989
+ "loss": 1.2119,
990
+ "step": 1400
991
+ },
992
+ {
993
+ "epoch": 0.4512,
994
+ "grad_norm": 0.4750172793865204,
995
+ "learning_rate": 5.491200000000001e-06,
996
+ "loss": 1.3432,
997
+ "step": 1410
998
+ },
999
+ {
1000
+ "epoch": 0.4544,
1001
+ "grad_norm": 0.5095167756080627,
1002
+ "learning_rate": 5.4592e-06,
1003
+ "loss": 1.3448,
1004
+ "step": 1420
1005
+ },
1006
+ {
1007
+ "epoch": 0.4576,
1008
+ "grad_norm": 0.47408685088157654,
1009
+ "learning_rate": 5.4272e-06,
1010
+ "loss": 1.3436,
1011
+ "step": 1430
1012
+ },
1013
+ {
1014
+ "epoch": 0.4608,
1015
+ "grad_norm": 0.45464885234832764,
1016
+ "learning_rate": 5.3952000000000005e-06,
1017
+ "loss": 1.1962,
1018
+ "step": 1440
1019
+ },
1020
+ {
1021
+ "epoch": 0.464,
1022
+ "grad_norm": 0.431349515914917,
1023
+ "learning_rate": 5.363200000000001e-06,
1024
+ "loss": 1.2773,
1025
+ "step": 1450
1026
+ },
1027
+ {
1028
+ "epoch": 0.4672,
1029
+ "grad_norm": 0.444397896528244,
1030
+ "learning_rate": 5.331200000000001e-06,
1031
+ "loss": 1.3163,
1032
+ "step": 1460
1033
+ },
1034
+ {
1035
+ "epoch": 0.4704,
1036
+ "grad_norm": 0.4360913038253784,
1037
+ "learning_rate": 5.2992e-06,
1038
+ "loss": 1.2759,
1039
+ "step": 1470
1040
+ },
1041
+ {
1042
+ "epoch": 0.4736,
1043
+ "grad_norm": 0.5152497887611389,
1044
+ "learning_rate": 5.2672e-06,
1045
+ "loss": 1.3225,
1046
+ "step": 1480
1047
+ },
1048
+ {
1049
+ "epoch": 0.4768,
1050
+ "grad_norm": 0.48929157853126526,
1051
+ "learning_rate": 5.2352e-06,
1052
+ "loss": 1.3213,
1053
+ "step": 1490
1054
+ },
1055
+ {
1056
+ "epoch": 0.48,
1057
+ "grad_norm": 0.4925262928009033,
1058
+ "learning_rate": 5.2032000000000004e-06,
1059
+ "loss": 1.2008,
1060
+ "step": 1500
1061
+ },
1062
+ {
1063
+ "epoch": 0.4832,
1064
+ "grad_norm": 0.46162164211273193,
1065
+ "learning_rate": 5.1712000000000006e-06,
1066
+ "loss": 1.2996,
1067
+ "step": 1510
1068
+ },
1069
+ {
1070
+ "epoch": 0.4864,
1071
+ "grad_norm": 0.4908200800418854,
1072
+ "learning_rate": 5.139200000000001e-06,
1073
+ "loss": 1.2729,
1074
+ "step": 1520
1075
+ },
1076
+ {
1077
+ "epoch": 0.4896,
1078
+ "grad_norm": 0.5178566575050354,
1079
+ "learning_rate": 5.1072e-06,
1080
+ "loss": 1.293,
1081
+ "step": 1530
1082
+ },
1083
+ {
1084
+ "epoch": 0.4928,
1085
+ "grad_norm": 0.5733951330184937,
1086
+ "learning_rate": 5.0752e-06,
1087
+ "loss": 1.3573,
1088
+ "step": 1540
1089
+ },
1090
+ {
1091
+ "epoch": 0.496,
1092
+ "grad_norm": 0.4558843672275543,
1093
+ "learning_rate": 5.0432e-06,
1094
+ "loss": 1.3445,
1095
+ "step": 1550
1096
+ },
1097
+ {
1098
+ "epoch": 0.4992,
1099
+ "grad_norm": 0.5171469449996948,
1100
+ "learning_rate": 5.0112e-06,
1101
+ "loss": 1.2293,
1102
+ "step": 1560
1103
+ },
1104
+ {
1105
+ "epoch": 0.5024,
1106
+ "grad_norm": 0.4879666864871979,
1107
+ "learning_rate": 4.9792000000000005e-06,
1108
+ "loss": 1.31,
1109
+ "step": 1570
1110
+ },
1111
+ {
1112
+ "epoch": 0.5056,
1113
+ "grad_norm": 0.4393675923347473,
1114
+ "learning_rate": 4.947200000000001e-06,
1115
+ "loss": 1.3186,
1116
+ "step": 1580
1117
+ },
1118
+ {
1119
+ "epoch": 0.5088,
1120
+ "grad_norm": 0.5072659254074097,
1121
+ "learning_rate": 4.915200000000001e-06,
1122
+ "loss": 1.2857,
1123
+ "step": 1590
1124
+ },
1125
+ {
1126
+ "epoch": 0.512,
1127
+ "grad_norm": 0.5163191556930542,
1128
+ "learning_rate": 4.8832e-06,
1129
+ "loss": 1.3401,
1130
+ "step": 1600
1131
+ },
1132
+ {
1133
+ "epoch": 0.5152,
1134
+ "grad_norm": 0.5119105577468872,
1135
+ "learning_rate": 4.8512e-06,
1136
+ "loss": 1.32,
1137
+ "step": 1610
1138
+ },
1139
+ {
1140
+ "epoch": 0.5184,
1141
+ "grad_norm": 0.5342932939529419,
1142
+ "learning_rate": 4.8192e-06,
1143
+ "loss": 1.206,
1144
+ "step": 1620
1145
+ },
1146
+ {
1147
+ "epoch": 0.5216,
1148
+ "grad_norm": 0.4517419636249542,
1149
+ "learning_rate": 4.7872000000000005e-06,
1150
+ "loss": 1.3077,
1151
+ "step": 1630
1152
+ },
1153
+ {
1154
+ "epoch": 0.5248,
1155
+ "grad_norm": 0.46141722798347473,
1156
+ "learning_rate": 4.755200000000001e-06,
1157
+ "loss": 1.2873,
1158
+ "step": 1640
1159
+ },
1160
+ {
1161
+ "epoch": 0.528,
1162
+ "grad_norm": 0.41747117042541504,
1163
+ "learning_rate": 4.723200000000001e-06,
1164
+ "loss": 1.2715,
1165
+ "step": 1650
1166
+ },
1167
+ {
1168
+ "epoch": 0.5312,
1169
+ "grad_norm": 0.48263996839523315,
1170
+ "learning_rate": 4.6912e-06,
1171
+ "loss": 1.2814,
1172
+ "step": 1660
1173
+ },
1174
+ {
1175
+ "epoch": 0.5344,
1176
+ "grad_norm": 0.4876611828804016,
1177
+ "learning_rate": 4.6592e-06,
1178
+ "loss": 1.2776,
1179
+ "step": 1670
1180
+ },
1181
+ {
1182
+ "epoch": 0.5376,
1183
+ "grad_norm": 0.46099624037742615,
1184
+ "learning_rate": 4.6272e-06,
1185
+ "loss": 1.3839,
1186
+ "step": 1680
1187
+ },
1188
+ {
1189
+ "epoch": 0.5408,
1190
+ "grad_norm": 0.46614623069763184,
1191
+ "learning_rate": 4.5952000000000005e-06,
1192
+ "loss": 1.2717,
1193
+ "step": 1690
1194
+ },
1195
+ {
1196
+ "epoch": 0.544,
1197
+ "grad_norm": 0.48747870326042175,
1198
+ "learning_rate": 4.563200000000001e-06,
1199
+ "loss": 1.2937,
1200
+ "step": 1700
1201
+ },
1202
+ {
1203
+ "epoch": 0.5472,
1204
+ "grad_norm": 0.5542135238647461,
1205
+ "learning_rate": 4.531200000000001e-06,
1206
+ "loss": 1.2622,
1207
+ "step": 1710
1208
+ },
1209
+ {
1210
+ "epoch": 0.5504,
1211
+ "grad_norm": 0.46008777618408203,
1212
+ "learning_rate": 4.4992e-06,
1213
+ "loss": 1.3188,
1214
+ "step": 1720
1215
+ },
1216
+ {
1217
+ "epoch": 0.5536,
1218
+ "grad_norm": 0.4853471517562866,
1219
+ "learning_rate": 4.4672e-06,
1220
+ "loss": 1.252,
1221
+ "step": 1730
1222
+ },
1223
+ {
1224
+ "epoch": 0.5568,
1225
+ "grad_norm": 0.44900670647621155,
1226
+ "learning_rate": 4.4352e-06,
1227
+ "loss": 1.2549,
1228
+ "step": 1740
1229
+ },
1230
+ {
1231
+ "epoch": 0.56,
1232
+ "grad_norm": 0.4973522126674652,
1233
+ "learning_rate": 4.4032000000000005e-06,
1234
+ "loss": 1.2959,
1235
+ "step": 1750
1236
+ },
1237
+ {
1238
+ "epoch": 0.5632,
1239
+ "grad_norm": 0.45412448048591614,
1240
+ "learning_rate": 4.371200000000001e-06,
1241
+ "loss": 1.2092,
1242
+ "step": 1760
1243
+ },
1244
+ {
1245
+ "epoch": 0.5664,
1246
+ "grad_norm": 0.5110604763031006,
1247
+ "learning_rate": 4.3392e-06,
1248
+ "loss": 1.3127,
1249
+ "step": 1770
1250
+ },
1251
+ {
1252
+ "epoch": 0.5696,
1253
+ "grad_norm": 0.5951307415962219,
1254
+ "learning_rate": 4.3072e-06,
1255
+ "loss": 1.2603,
1256
+ "step": 1780
1257
+ },
1258
+ {
1259
+ "epoch": 0.5728,
1260
+ "grad_norm": 0.49740588665008545,
1261
+ "learning_rate": 4.2752e-06,
1262
+ "loss": 1.2609,
1263
+ "step": 1790
1264
+ },
1265
+ {
1266
+ "epoch": 0.576,
1267
+ "grad_norm": 0.4803503155708313,
1268
+ "learning_rate": 4.2432e-06,
1269
+ "loss": 1.2287,
1270
+ "step": 1800
1271
+ },
1272
+ {
1273
+ "epoch": 0.5792,
1274
+ "grad_norm": 0.48638489842414856,
1275
+ "learning_rate": 4.2112000000000004e-06,
1276
+ "loss": 1.2245,
1277
+ "step": 1810
1278
+ },
1279
+ {
1280
+ "epoch": 0.5824,
1281
+ "grad_norm": 0.48148202896118164,
1282
+ "learning_rate": 4.179200000000001e-06,
1283
+ "loss": 1.2858,
1284
+ "step": 1820
1285
+ },
1286
+ {
1287
+ "epoch": 0.5856,
1288
+ "grad_norm": 0.5493887662887573,
1289
+ "learning_rate": 4.1472e-06,
1290
+ "loss": 1.2765,
1291
+ "step": 1830
1292
+ },
1293
+ {
1294
+ "epoch": 0.5888,
1295
+ "grad_norm": 0.45376092195510864,
1296
+ "learning_rate": 4.1152e-06,
1297
+ "loss": 1.1914,
1298
+ "step": 1840
1299
+ },
1300
+ {
1301
+ "epoch": 0.592,
1302
+ "grad_norm": 0.5095167756080627,
1303
+ "learning_rate": 4.0832e-06,
1304
+ "loss": 1.2916,
1305
+ "step": 1850
1306
+ },
1307
+ {
1308
+ "epoch": 0.5952,
1309
+ "grad_norm": 0.5425928831100464,
1310
+ "learning_rate": 4.0512e-06,
1311
+ "loss": 1.2189,
1312
+ "step": 1860
1313
+ },
1314
+ {
1315
+ "epoch": 0.5984,
1316
+ "grad_norm": 0.46790796518325806,
1317
+ "learning_rate": 4.0192e-06,
1318
+ "loss": 1.3668,
1319
+ "step": 1870
1320
+ },
1321
+ {
1322
+ "epoch": 0.6016,
1323
+ "grad_norm": 0.48903679847717285,
1324
+ "learning_rate": 3.9872000000000006e-06,
1325
+ "loss": 1.2132,
1326
+ "step": 1880
1327
+ },
1328
+ {
1329
+ "epoch": 0.6048,
1330
+ "grad_norm": 0.47461065649986267,
1331
+ "learning_rate": 3.9552e-06,
1332
+ "loss": 1.2794,
1333
+ "step": 1890
1334
+ },
1335
+ {
1336
+ "epoch": 0.608,
1337
+ "grad_norm": 0.4707651436328888,
1338
+ "learning_rate": 3.9232e-06,
1339
+ "loss": 1.3,
1340
+ "step": 1900
1341
+ },
1342
+ {
1343
+ "epoch": 0.6112,
1344
+ "grad_norm": 0.5604966878890991,
1345
+ "learning_rate": 3.8912e-06,
1346
+ "loss": 1.2272,
1347
+ "step": 1910
1348
+ },
1349
+ {
1350
+ "epoch": 0.6144,
1351
+ "grad_norm": 0.5373271107673645,
1352
+ "learning_rate": 3.8592e-06,
1353
+ "loss": 1.2522,
1354
+ "step": 1920
1355
+ },
1356
+ {
1357
+ "epoch": 0.6176,
1358
+ "grad_norm": 0.50235915184021,
1359
+ "learning_rate": 3.8272e-06,
1360
+ "loss": 1.2486,
1361
+ "step": 1930
1362
+ },
1363
+ {
1364
+ "epoch": 0.6208,
1365
+ "grad_norm": 0.4826876223087311,
1366
+ "learning_rate": 3.7952000000000005e-06,
1367
+ "loss": 1.3355,
1368
+ "step": 1940
1369
+ },
1370
+ {
1371
+ "epoch": 0.624,
1372
+ "grad_norm": 0.46976956725120544,
1373
+ "learning_rate": 3.7632000000000002e-06,
1374
+ "loss": 1.2725,
1375
+ "step": 1950
1376
+ },
1377
+ {
1378
+ "epoch": 0.6272,
1379
+ "grad_norm": 0.5186979174613953,
1380
+ "learning_rate": 3.7312000000000004e-06,
1381
+ "loss": 1.3073,
1382
+ "step": 1960
1383
+ },
1384
+ {
1385
+ "epoch": 0.6304,
1386
+ "grad_norm": 0.4939082860946655,
1387
+ "learning_rate": 3.6992000000000005e-06,
1388
+ "loss": 1.2649,
1389
+ "step": 1970
1390
+ },
1391
+ {
1392
+ "epoch": 0.6336,
1393
+ "grad_norm": 0.5091391205787659,
1394
+ "learning_rate": 3.6672000000000002e-06,
1395
+ "loss": 1.4142,
1396
+ "step": 1980
1397
+ },
1398
+ {
1399
+ "epoch": 0.6368,
1400
+ "grad_norm": 0.4665001928806305,
1401
+ "learning_rate": 3.6352000000000004e-06,
1402
+ "loss": 1.2606,
1403
+ "step": 1990
1404
+ },
1405
+ {
1406
+ "epoch": 0.64,
1407
+ "grad_norm": 0.48443859815597534,
1408
+ "learning_rate": 3.6032e-06,
1409
+ "loss": 1.1884,
1410
+ "step": 2000
1411
+ },
1412
+ {
1413
+ "epoch": 0.6432,
1414
+ "grad_norm": 0.5871022939682007,
1415
+ "learning_rate": 3.5712000000000002e-06,
1416
+ "loss": 1.3792,
1417
+ "step": 2010
1418
+ },
1419
+ {
1420
+ "epoch": 0.6464,
1421
+ "grad_norm": 0.48302605748176575,
1422
+ "learning_rate": 3.5392000000000004e-06,
1423
+ "loss": 1.262,
1424
+ "step": 2020
1425
+ },
1426
+ {
1427
+ "epoch": 0.6496,
1428
+ "grad_norm": 0.4569855034351349,
1429
+ "learning_rate": 3.5072e-06,
1430
+ "loss": 1.2587,
1431
+ "step": 2030
1432
+ },
1433
+ {
1434
+ "epoch": 0.6528,
1435
+ "grad_norm": 0.5194870829582214,
1436
+ "learning_rate": 3.4752e-06,
1437
+ "loss": 1.3056,
1438
+ "step": 2040
1439
+ },
1440
+ {
1441
+ "epoch": 0.656,
1442
+ "grad_norm": 0.4751642346382141,
1443
+ "learning_rate": 3.4432000000000003e-06,
1444
+ "loss": 1.1733,
1445
+ "step": 2050
1446
+ },
1447
+ {
1448
+ "epoch": 0.6592,
1449
+ "grad_norm": 0.5077437162399292,
1450
+ "learning_rate": 3.4112e-06,
1451
+ "loss": 1.3218,
1452
+ "step": 2060
1453
+ },
1454
+ {
1455
+ "epoch": 0.6624,
1456
+ "grad_norm": 0.49009519815444946,
1457
+ "learning_rate": 3.3792e-06,
1458
+ "loss": 1.224,
1459
+ "step": 2070
1460
+ },
1461
+ {
1462
+ "epoch": 0.6656,
1463
+ "grad_norm": 0.4634891152381897,
1464
+ "learning_rate": 3.3472000000000003e-06,
1465
+ "loss": 1.2727,
1466
+ "step": 2080
1467
+ },
1468
+ {
1469
+ "epoch": 0.6688,
1470
+ "grad_norm": 0.5274826884269714,
1471
+ "learning_rate": 3.3152e-06,
1472
+ "loss": 1.2916,
1473
+ "step": 2090
1474
+ },
1475
+ {
1476
+ "epoch": 0.672,
1477
+ "grad_norm": 0.5165941715240479,
1478
+ "learning_rate": 3.2832e-06,
1479
+ "loss": 1.2878,
1480
+ "step": 2100
1481
+ },
1482
+ {
1483
+ "epoch": 0.6752,
1484
+ "grad_norm": 0.5654541254043579,
1485
+ "learning_rate": 3.2512000000000003e-06,
1486
+ "loss": 1.2749,
1487
+ "step": 2110
1488
+ },
1489
+ {
1490
+ "epoch": 0.6784,
1491
+ "grad_norm": 0.49610668420791626,
1492
+ "learning_rate": 3.2192e-06,
1493
+ "loss": 1.2668,
1494
+ "step": 2120
1495
+ },
1496
+ {
1497
+ "epoch": 0.6816,
1498
+ "grad_norm": 0.5377901196479797,
1499
+ "learning_rate": 3.1872e-06,
1500
+ "loss": 1.2671,
1501
+ "step": 2130
1502
+ },
1503
+ {
1504
+ "epoch": 0.6848,
1505
+ "grad_norm": 0.5280618071556091,
1506
+ "learning_rate": 3.1552000000000003e-06,
1507
+ "loss": 1.2637,
1508
+ "step": 2140
1509
+ },
1510
+ {
1511
+ "epoch": 0.688,
1512
+ "grad_norm": 0.5266459584236145,
1513
+ "learning_rate": 3.1232e-06,
1514
+ "loss": 1.2604,
1515
+ "step": 2150
1516
+ },
1517
+ {
1518
+ "epoch": 0.6912,
1519
+ "grad_norm": 0.47189775109291077,
1520
+ "learning_rate": 3.0912e-06,
1521
+ "loss": 1.2546,
1522
+ "step": 2160
1523
+ },
1524
+ {
1525
+ "epoch": 0.6944,
1526
+ "grad_norm": 0.5069970488548279,
1527
+ "learning_rate": 3.0592000000000007e-06,
1528
+ "loss": 1.2538,
1529
+ "step": 2170
1530
+ },
1531
+ {
1532
+ "epoch": 0.6976,
1533
+ "grad_norm": 0.5452210903167725,
1534
+ "learning_rate": 3.0272e-06,
1535
+ "loss": 1.2896,
1536
+ "step": 2180
1537
+ },
1538
+ {
1539
+ "epoch": 0.7008,
1540
+ "grad_norm": 0.47197288274765015,
1541
+ "learning_rate": 2.9952e-06,
1542
+ "loss": 1.2104,
1543
+ "step": 2190
1544
+ },
1545
+ {
1546
+ "epoch": 0.704,
1547
+ "grad_norm": 0.5163410305976868,
1548
+ "learning_rate": 2.9632e-06,
1549
+ "loss": 1.2495,
1550
+ "step": 2200
1551
+ },
1552
+ {
1553
+ "epoch": 0.7072,
1554
+ "grad_norm": 0.4659384787082672,
1555
+ "learning_rate": 2.9312e-06,
1556
+ "loss": 1.226,
1557
+ "step": 2210
1558
+ },
1559
+ {
1560
+ "epoch": 0.7104,
1561
+ "grad_norm": 0.5424367189407349,
1562
+ "learning_rate": 2.8992000000000005e-06,
1563
+ "loss": 1.3475,
1564
+ "step": 2220
1565
+ },
1566
+ {
1567
+ "epoch": 0.7136,
1568
+ "grad_norm": 0.5033388137817383,
1569
+ "learning_rate": 2.8672e-06,
1570
+ "loss": 1.2415,
1571
+ "step": 2230
1572
+ },
1573
+ {
1574
+ "epoch": 0.7168,
1575
+ "grad_norm": 0.4847257733345032,
1576
+ "learning_rate": 2.8352e-06,
1577
+ "loss": 1.2562,
1578
+ "step": 2240
1579
+ },
1580
+ {
1581
+ "epoch": 0.72,
1582
+ "grad_norm": 0.5888292789459229,
1583
+ "learning_rate": 2.8032000000000005e-06,
1584
+ "loss": 1.3166,
1585
+ "step": 2250
1586
+ },
1587
+ {
1588
+ "epoch": 0.7232,
1589
+ "grad_norm": 0.5637612342834473,
1590
+ "learning_rate": 2.7712e-06,
1591
+ "loss": 1.2805,
1592
+ "step": 2260
1593
+ },
1594
+ {
1595
+ "epoch": 0.7264,
1596
+ "grad_norm": 0.477873831987381,
1597
+ "learning_rate": 2.7392000000000004e-06,
1598
+ "loss": 1.2804,
1599
+ "step": 2270
1600
+ },
1601
+ {
1602
+ "epoch": 0.7296,
1603
+ "grad_norm": 0.627713143825531,
1604
+ "learning_rate": 2.7072000000000005e-06,
1605
+ "loss": 1.2844,
1606
+ "step": 2280
1607
+ },
1608
+ {
1609
+ "epoch": 0.7328,
1610
+ "grad_norm": 0.5947350859642029,
1611
+ "learning_rate": 2.6752e-06,
1612
+ "loss": 1.28,
1613
+ "step": 2290
1614
+ },
1615
+ {
1616
+ "epoch": 0.736,
1617
+ "grad_norm": 0.49309098720550537,
1618
+ "learning_rate": 2.6432000000000004e-06,
1619
+ "loss": 1.353,
1620
+ "step": 2300
1621
+ },
1622
+ {
1623
+ "epoch": 0.7392,
1624
+ "grad_norm": 0.5657567381858826,
1625
+ "learning_rate": 2.6112000000000005e-06,
1626
+ "loss": 1.3422,
1627
+ "step": 2310
1628
+ },
1629
+ {
1630
+ "epoch": 0.7424,
1631
+ "grad_norm": 0.5906503200531006,
1632
+ "learning_rate": 2.5792000000000002e-06,
1633
+ "loss": 1.2691,
1634
+ "step": 2320
1635
+ },
1636
+ {
1637
+ "epoch": 0.7456,
1638
+ "grad_norm": 0.5093393325805664,
1639
+ "learning_rate": 2.5472000000000004e-06,
1640
+ "loss": 1.2689,
1641
+ "step": 2330
1642
+ },
1643
+ {
1644
+ "epoch": 0.7488,
1645
+ "grad_norm": 0.48354557156562805,
1646
+ "learning_rate": 2.5152000000000005e-06,
1647
+ "loss": 1.2062,
1648
+ "step": 2340
1649
+ },
1650
+ {
1651
+ "epoch": 0.752,
1652
+ "grad_norm": 0.6542074084281921,
1653
+ "learning_rate": 2.4832000000000002e-06,
1654
+ "loss": 1.2852,
1655
+ "step": 2350
1656
+ },
1657
+ {
1658
+ "epoch": 0.7552,
1659
+ "grad_norm": 0.5252315998077393,
1660
+ "learning_rate": 2.4512000000000003e-06,
1661
+ "loss": 1.2635,
1662
+ "step": 2360
1663
+ },
1664
+ {
1665
+ "epoch": 0.7584,
1666
+ "grad_norm": 0.48583582043647766,
1667
+ "learning_rate": 2.4192e-06,
1668
+ "loss": 1.2096,
1669
+ "step": 2370
1670
+ },
1671
+ {
1672
+ "epoch": 0.7616,
1673
+ "grad_norm": 0.49642977118492126,
1674
+ "learning_rate": 2.3872e-06,
1675
+ "loss": 1.2424,
1676
+ "step": 2380
1677
+ },
1678
+ {
1679
+ "epoch": 0.7648,
1680
+ "grad_norm": 0.6025352478027344,
1681
+ "learning_rate": 2.3552000000000003e-06,
1682
+ "loss": 1.2992,
1683
+ "step": 2390
1684
+ },
1685
+ {
1686
+ "epoch": 0.768,
1687
+ "grad_norm": 0.5461027026176453,
1688
+ "learning_rate": 2.3232e-06,
1689
+ "loss": 1.2946,
1690
+ "step": 2400
1691
+ },
1692
+ {
1693
+ "epoch": 0.7712,
1694
+ "grad_norm": 0.6130191683769226,
1695
+ "learning_rate": 2.2912e-06,
1696
+ "loss": 1.2398,
1697
+ "step": 2410
1698
+ },
1699
+ {
1700
+ "epoch": 0.7744,
1701
+ "grad_norm": 0.6468284726142883,
1702
+ "learning_rate": 2.2592000000000003e-06,
1703
+ "loss": 1.3087,
1704
+ "step": 2420
1705
+ },
1706
+ {
1707
+ "epoch": 0.7776,
1708
+ "grad_norm": 0.6268571019172668,
1709
+ "learning_rate": 2.2272e-06,
1710
+ "loss": 1.1613,
1711
+ "step": 2430
1712
+ },
1713
+ {
1714
+ "epoch": 0.7808,
1715
+ "grad_norm": 0.7104691863059998,
1716
+ "learning_rate": 2.1952e-06,
1717
+ "loss": 1.27,
1718
+ "step": 2440
1719
+ },
1720
+ {
1721
+ "epoch": 0.784,
1722
+ "grad_norm": 0.4856204688549042,
1723
+ "learning_rate": 2.1632000000000003e-06,
1724
+ "loss": 1.2731,
1725
+ "step": 2450
1726
+ },
1727
+ {
1728
+ "epoch": 0.7872,
1729
+ "grad_norm": 0.5168479681015015,
1730
+ "learning_rate": 2.1312e-06,
1731
+ "loss": 1.3437,
1732
+ "step": 2460
1733
+ },
1734
+ {
1735
+ "epoch": 0.7904,
1736
+ "grad_norm": 0.659817636013031,
1737
+ "learning_rate": 2.0992e-06,
1738
+ "loss": 1.2839,
1739
+ "step": 2470
1740
+ },
1741
+ {
1742
+ "epoch": 0.7936,
1743
+ "grad_norm": 0.5834536552429199,
1744
+ "learning_rate": 2.0672e-06,
1745
+ "loss": 1.3048,
1746
+ "step": 2480
1747
+ },
1748
+ {
1749
+ "epoch": 0.7968,
1750
+ "grad_norm": 0.4839385151863098,
1751
+ "learning_rate": 2.0352000000000004e-06,
1752
+ "loss": 1.2803,
1753
+ "step": 2490
1754
+ },
1755
+ {
1756
+ "epoch": 0.8,
1757
+ "grad_norm": 0.588320255279541,
1758
+ "learning_rate": 2.0032e-06,
1759
+ "loss": 1.2276,
1760
+ "step": 2500
1761
+ },
1762
+ {
1763
+ "epoch": 0.8032,
1764
+ "grad_norm": 0.5608358383178711,
1765
+ "learning_rate": 1.9712e-06,
1766
+ "loss": 1.3644,
1767
+ "step": 2510
1768
+ },
1769
+ {
1770
+ "epoch": 0.8064,
1771
+ "grad_norm": 0.5970802903175354,
1772
+ "learning_rate": 1.9392000000000004e-06,
1773
+ "loss": 1.2919,
1774
+ "step": 2520
1775
+ },
1776
+ {
1777
+ "epoch": 0.8096,
1778
+ "grad_norm": 0.5823186039924622,
1779
+ "learning_rate": 1.9072000000000001e-06,
1780
+ "loss": 1.3033,
1781
+ "step": 2530
1782
+ },
1783
+ {
1784
+ "epoch": 0.8128,
1785
+ "grad_norm": 0.5669010281562805,
1786
+ "learning_rate": 1.8752e-06,
1787
+ "loss": 1.3379,
1788
+ "step": 2540
1789
+ },
1790
+ {
1791
+ "epoch": 0.816,
1792
+ "grad_norm": 0.5039373636245728,
1793
+ "learning_rate": 1.8432000000000002e-06,
1794
+ "loss": 1.2282,
1795
+ "step": 2550
1796
+ },
1797
+ {
1798
+ "epoch": 0.8192,
1799
+ "grad_norm": 0.5700042843818665,
1800
+ "learning_rate": 1.8112000000000001e-06,
1801
+ "loss": 1.2615,
1802
+ "step": 2560
1803
+ },
1804
+ {
1805
+ "epoch": 0.8224,
1806
+ "grad_norm": 0.5190805196762085,
1807
+ "learning_rate": 1.7792e-06,
1808
+ "loss": 1.2593,
1809
+ "step": 2570
1810
+ },
1811
+ {
1812
+ "epoch": 0.8256,
1813
+ "grad_norm": 0.5930772423744202,
1814
+ "learning_rate": 1.7472e-06,
1815
+ "loss": 1.2265,
1816
+ "step": 2580
1817
+ },
1818
+ {
1819
+ "epoch": 0.8288,
1820
+ "grad_norm": 0.5103446245193481,
1821
+ "learning_rate": 1.7152000000000001e-06,
1822
+ "loss": 1.2012,
1823
+ "step": 2590
1824
+ },
1825
+ {
1826
+ "epoch": 0.832,
1827
+ "grad_norm": 0.534788966178894,
1828
+ "learning_rate": 1.6832e-06,
1829
+ "loss": 1.2393,
1830
+ "step": 2600
1831
+ },
1832
+ {
1833
+ "epoch": 0.8352,
1834
+ "grad_norm": 0.572394609451294,
1835
+ "learning_rate": 1.6512e-06,
1836
+ "loss": 1.2876,
1837
+ "step": 2610
1838
+ },
1839
+ {
1840
+ "epoch": 0.8384,
1841
+ "grad_norm": 0.4987950623035431,
1842
+ "learning_rate": 1.6192000000000003e-06,
1843
+ "loss": 1.2783,
1844
+ "step": 2620
1845
+ },
1846
+ {
1847
+ "epoch": 0.8416,
1848
+ "grad_norm": 0.5138176083564758,
1849
+ "learning_rate": 1.5872e-06,
1850
+ "loss": 1.2559,
1851
+ "step": 2630
1852
+ },
1853
+ {
1854
+ "epoch": 0.8448,
1855
+ "grad_norm": 0.5693644881248474,
1856
+ "learning_rate": 1.5552e-06,
1857
+ "loss": 1.2599,
1858
+ "step": 2640
1859
+ },
1860
+ {
1861
+ "epoch": 0.848,
1862
+ "grad_norm": 0.6024214029312134,
1863
+ "learning_rate": 1.5232000000000003e-06,
1864
+ "loss": 1.3064,
1865
+ "step": 2650
1866
+ },
1867
+ {
1868
+ "epoch": 0.8512,
1869
+ "grad_norm": 0.5588571429252625,
1870
+ "learning_rate": 1.4912000000000002e-06,
1871
+ "loss": 1.2977,
1872
+ "step": 2660
1873
+ },
1874
+ {
1875
+ "epoch": 0.8544,
1876
+ "grad_norm": 0.5551236867904663,
1877
+ "learning_rate": 1.4592000000000001e-06,
1878
+ "loss": 1.3121,
1879
+ "step": 2670
1880
+ },
1881
+ {
1882
+ "epoch": 0.8576,
1883
+ "grad_norm": 0.5989100933074951,
1884
+ "learning_rate": 1.4272000000000003e-06,
1885
+ "loss": 1.2795,
1886
+ "step": 2680
1887
+ },
1888
+ {
1889
+ "epoch": 0.8608,
1890
+ "grad_norm": 0.6164664626121521,
1891
+ "learning_rate": 1.3952000000000002e-06,
1892
+ "loss": 1.3366,
1893
+ "step": 2690
1894
+ },
1895
+ {
1896
+ "epoch": 0.864,
1897
+ "grad_norm": 0.6146747469902039,
1898
+ "learning_rate": 1.3632000000000001e-06,
1899
+ "loss": 1.2494,
1900
+ "step": 2700
1901
+ },
1902
+ {
1903
+ "epoch": 0.8672,
1904
+ "grad_norm": 0.6117052435874939,
1905
+ "learning_rate": 1.3312e-06,
1906
+ "loss": 1.2398,
1907
+ "step": 2710
1908
+ },
1909
+ {
1910
+ "epoch": 0.8704,
1911
+ "grad_norm": 0.4775325655937195,
1912
+ "learning_rate": 1.2992000000000002e-06,
1913
+ "loss": 1.3065,
1914
+ "step": 2720
1915
+ },
1916
+ {
1917
+ "epoch": 0.8736,
1918
+ "grad_norm": 0.6605592966079712,
1919
+ "learning_rate": 1.2672000000000001e-06,
1920
+ "loss": 1.1719,
1921
+ "step": 2730
1922
+ },
1923
+ {
1924
+ "epoch": 0.8768,
1925
+ "grad_norm": 0.48634928464889526,
1926
+ "learning_rate": 1.2352e-06,
1927
+ "loss": 1.2774,
1928
+ "step": 2740
1929
+ },
1930
+ {
1931
+ "epoch": 0.88,
1932
+ "grad_norm": 0.6096370220184326,
1933
+ "learning_rate": 1.2032e-06,
1934
+ "loss": 1.3231,
1935
+ "step": 2750
1936
+ },
1937
+ {
1938
+ "epoch": 0.8832,
1939
+ "grad_norm": 0.5880251526832581,
1940
+ "learning_rate": 1.1712000000000001e-06,
1941
+ "loss": 1.2641,
1942
+ "step": 2760
1943
+ },
1944
+ {
1945
+ "epoch": 0.8864,
1946
+ "grad_norm": 0.5116971135139465,
1947
+ "learning_rate": 1.1392e-06,
1948
+ "loss": 1.2763,
1949
+ "step": 2770
1950
+ },
1951
+ {
1952
+ "epoch": 0.8896,
1953
+ "grad_norm": 0.6191303730010986,
1954
+ "learning_rate": 1.1072000000000002e-06,
1955
+ "loss": 1.2622,
1956
+ "step": 2780
1957
+ },
1958
+ {
1959
+ "epoch": 0.8928,
1960
+ "grad_norm": 0.5492941737174988,
1961
+ "learning_rate": 1.0752e-06,
1962
+ "loss": 1.3002,
1963
+ "step": 2790
1964
+ },
1965
+ {
1966
+ "epoch": 0.896,
1967
+ "grad_norm": 0.6216818690299988,
1968
+ "learning_rate": 1.0432e-06,
1969
+ "loss": 1.3222,
1970
+ "step": 2800
1971
+ },
1972
+ {
1973
+ "epoch": 0.8992,
1974
+ "grad_norm": 0.5383599400520325,
1975
+ "learning_rate": 1.0112000000000002e-06,
1976
+ "loss": 1.292,
1977
+ "step": 2810
1978
+ },
1979
+ {
1980
+ "epoch": 0.9024,
1981
+ "grad_norm": 0.5288344025611877,
1982
+ "learning_rate": 9.792e-07,
1983
+ "loss": 1.2895,
1984
+ "step": 2820
1985
+ },
1986
+ {
1987
+ "epoch": 0.9056,
1988
+ "grad_norm": 0.5043691396713257,
1989
+ "learning_rate": 9.472e-07,
1990
+ "loss": 1.2499,
1991
+ "step": 2830
1992
+ },
1993
+ {
1994
+ "epoch": 0.9088,
1995
+ "grad_norm": 0.5582976341247559,
1996
+ "learning_rate": 9.152000000000001e-07,
1997
+ "loss": 1.2986,
1998
+ "step": 2840
1999
+ },
2000
+ {
2001
+ "epoch": 0.912,
2002
+ "grad_norm": 0.5215420126914978,
2003
+ "learning_rate": 8.832000000000001e-07,
2004
+ "loss": 1.3142,
2005
+ "step": 2850
2006
+ },
2007
+ {
2008
+ "epoch": 0.9152,
2009
+ "grad_norm": 0.5378311276435852,
2010
+ "learning_rate": 8.512000000000001e-07,
2011
+ "loss": 1.2104,
2012
+ "step": 2860
2013
+ },
2014
+ {
2015
+ "epoch": 0.9184,
2016
+ "grad_norm": 0.5053496360778809,
2017
+ "learning_rate": 8.192000000000001e-07,
2018
+ "loss": 1.3056,
2019
+ "step": 2870
2020
+ },
2021
+ {
2022
+ "epoch": 0.9216,
2023
+ "grad_norm": 0.5381192564964294,
2024
+ "learning_rate": 7.872000000000001e-07,
2025
+ "loss": 1.3055,
2026
+ "step": 2880
2027
+ },
2028
+ {
2029
+ "epoch": 0.9248,
2030
+ "grad_norm": 0.6026363968849182,
2031
+ "learning_rate": 7.552000000000001e-07,
2032
+ "loss": 1.346,
2033
+ "step": 2890
2034
+ },
2035
+ {
2036
+ "epoch": 0.928,
2037
+ "grad_norm": 0.5687581896781921,
2038
+ "learning_rate": 7.232e-07,
2039
+ "loss": 1.3244,
2040
+ "step": 2900
2041
+ },
2042
+ {
2043
+ "epoch": 0.9312,
2044
+ "grad_norm": 0.5862733125686646,
2045
+ "learning_rate": 6.912e-07,
2046
+ "loss": 1.2806,
2047
+ "step": 2910
2048
+ },
2049
+ {
2050
+ "epoch": 0.9344,
2051
+ "grad_norm": 0.47303637862205505,
2052
+ "learning_rate": 6.592000000000001e-07,
2053
+ "loss": 1.2337,
2054
+ "step": 2920
2055
+ },
2056
+ {
2057
+ "epoch": 0.9376,
2058
+ "grad_norm": 0.509482741355896,
2059
+ "learning_rate": 6.272e-07,
2060
+ "loss": 1.2466,
2061
+ "step": 2930
2062
+ },
2063
+ {
2064
+ "epoch": 0.9408,
2065
+ "grad_norm": 0.5245184302330017,
2066
+ "learning_rate": 5.952e-07,
2067
+ "loss": 1.2577,
2068
+ "step": 2940
2069
+ },
2070
+ {
2071
+ "epoch": 0.944,
2072
+ "grad_norm": 0.7082109451293945,
2073
+ "learning_rate": 5.632000000000001e-07,
2074
+ "loss": 1.2272,
2075
+ "step": 2950
2076
+ },
2077
+ {
2078
+ "epoch": 0.9472,
2079
+ "grad_norm": 0.4797827899456024,
2080
+ "learning_rate": 5.312000000000001e-07,
2081
+ "loss": 1.3238,
2082
+ "step": 2960
2083
+ },
2084
+ {
2085
+ "epoch": 0.9504,
2086
+ "grad_norm": 0.5341638326644897,
2087
+ "learning_rate": 4.992e-07,
2088
+ "loss": 1.313,
2089
+ "step": 2970
2090
+ },
2091
+ {
2092
+ "epoch": 0.9536,
2093
+ "grad_norm": 0.5286096334457397,
2094
+ "learning_rate": 4.672e-07,
2095
+ "loss": 1.2538,
2096
+ "step": 2980
2097
+ },
2098
+ {
2099
+ "epoch": 0.9568,
2100
+ "grad_norm": 0.5771506428718567,
2101
+ "learning_rate": 4.352000000000001e-07,
2102
+ "loss": 1.2869,
2103
+ "step": 2990
2104
+ },
2105
+ {
2106
+ "epoch": 0.96,
2107
+ "grad_norm": 0.5290225744247437,
2108
+ "learning_rate": 4.0320000000000006e-07,
2109
+ "loss": 1.2882,
2110
+ "step": 3000
2111
+ },
2112
+ {
2113
+ "epoch": 0.9632,
2114
+ "grad_norm": 0.5034458637237549,
2115
+ "learning_rate": 3.7120000000000004e-07,
2116
+ "loss": 1.2333,
2117
+ "step": 3010
2118
+ },
2119
+ {
2120
+ "epoch": 0.9664,
2121
+ "grad_norm": 0.5447474122047424,
2122
+ "learning_rate": 3.392e-07,
2123
+ "loss": 1.2834,
2124
+ "step": 3020
2125
+ },
2126
+ {
2127
+ "epoch": 0.9696,
2128
+ "grad_norm": 0.685217559337616,
2129
+ "learning_rate": 3.0720000000000005e-07,
2130
+ "loss": 1.3295,
2131
+ "step": 3030
2132
+ },
2133
+ {
2134
+ "epoch": 0.9728,
2135
+ "grad_norm": 0.5744034051895142,
2136
+ "learning_rate": 2.7520000000000003e-07,
2137
+ "loss": 1.3135,
2138
+ "step": 3040
2139
+ },
2140
+ {
2141
+ "epoch": 0.976,
2142
+ "grad_norm": 0.7290722131729126,
2143
+ "learning_rate": 2.432e-07,
2144
+ "loss": 1.2872,
2145
+ "step": 3050
2146
+ },
2147
+ {
2148
+ "epoch": 0.9792,
2149
+ "grad_norm": 0.517284095287323,
2150
+ "learning_rate": 2.112e-07,
2151
+ "loss": 1.2822,
2152
+ "step": 3060
2153
+ },
2154
+ {
2155
+ "epoch": 0.9824,
2156
+ "grad_norm": 0.5856100916862488,
2157
+ "learning_rate": 1.792e-07,
2158
+ "loss": 1.2041,
2159
+ "step": 3070
2160
+ },
2161
+ {
2162
+ "epoch": 0.9856,
2163
+ "grad_norm": 0.5470112562179565,
2164
+ "learning_rate": 1.4720000000000002e-07,
2165
+ "loss": 1.2581,
2166
+ "step": 3080
2167
+ },
2168
+ {
2169
+ "epoch": 0.9888,
2170
+ "grad_norm": 0.5641172528266907,
2171
+ "learning_rate": 1.1520000000000001e-07,
2172
+ "loss": 1.3559,
2173
+ "step": 3090
2174
+ },
2175
+ {
2176
+ "epoch": 0.992,
2177
+ "grad_norm": 0.5377922058105469,
2178
+ "learning_rate": 8.32e-08,
2179
+ "loss": 1.2531,
2180
+ "step": 3100
2181
+ },
2182
+ {
2183
+ "epoch": 0.9952,
2184
+ "grad_norm": 0.579965353012085,
2185
+ "learning_rate": 5.120000000000001e-08,
2186
+ "loss": 1.3203,
2187
+ "step": 3110
2188
+ },
2189
+ {
2190
+ "epoch": 0.9984,
2191
+ "grad_norm": 0.5516660809516907,
2192
+ "learning_rate": 1.9200000000000003e-08,
2193
+ "loss": 1.2791,
2194
+ "step": 3120
2195
+ }
2196
+ ],
2197
+ "logging_steps": 10,
2198
+ "max_steps": 3125,
2199
+ "num_input_tokens_seen": 0,
2200
+ "num_train_epochs": 1,
2201
+ "save_steps": 500,
2202
+ "stateful_callbacks": {
2203
+ "TrainerControl": {
2204
+ "args": {
2205
+ "should_epoch_stop": false,
2206
+ "should_evaluate": false,
2207
+ "should_log": false,
2208
+ "should_save": true,
2209
+ "should_training_stop": true
2210
+ },
2211
+ "attributes": {}
2212
+ }
2213
+ },
2214
+ "total_flos": 5.08093267968e+17,
2215
+ "train_batch_size": 16,
2216
+ "trial_name": null,
2217
+ "trial_params": null
2218
+ }
checkpoint-3125/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f50bda178f37cda684cb4356d9d39f2f3b1715e2c678bf4e558b0eb08badced
3
+ size 5777
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "</s>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "clean_up_tokenization_spaces": false,
70
+ "eos_token": "</s>",
71
+ "eot_token": "▁<EOT>",
72
+ "extra_special_tokens": {},
73
+ "fill_token": "<FILL_ME>",
74
+ "legacy": null,
75
+ "middle_token": "▁<MID>",
76
+ "model_max_length": 1000000000000000019884624838656,
77
+ "pad_token": "</s>",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f50bda178f37cda684cb4356d9d39f2f3b1715e2c678bf4e558b0eb08badced
3
+ size 5777