ArsParadox commited on
Commit
f670287
·
verified ·
1 Parent(s): eaed343

Fine-tuned Mistral model on Viel-Lite Dataset

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 64,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "k_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "up_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1ceae16e91729527682a1cdd29e00194d3f84f4fbb4a158c66c078c6b5013e
3
+ size 671149168
checkpoint-180/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-180/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 64,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 64,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "q_proj",
27
+ "gate_proj",
28
+ "v_proj",
29
+ "k_proj",
30
+ "down_proj",
31
+ "o_proj",
32
+ "up_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-180/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1ceae16e91729527682a1cdd29e00194d3f84f4fbb4a158c66c078c6b5013e
3
+ size 671149168
checkpoint-180/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ad77a9b3b0e9a7b8c2f7cf7316a4815ca636c2417ffd261de8ef3f615321b0e
3
+ size 341314196
checkpoint-180/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:608fccb6c056ce88cdfd5355e6be2046f4d107a24a87c6b0d2c3b200ce6bb4ea
3
+ size 14244
checkpoint-180/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:894d0e48bf1444f129e12325905662a936cdeeb9fec3a46a0155b3b08f997b67
3
+ size 988
checkpoint-180/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9024c1b50ab9ddda3610cbc60929f3e57c4c124e3e86257a28298bf53e386ff6
3
+ size 1064
checkpoint-180/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[control_768]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-180/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-180/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
checkpoint-180/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-180/trainer_state.json ADDED
@@ -0,0 +1,1294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.144,
6
+ "eval_steps": 500,
7
+ "global_step": 180,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0008,
14
+ "grad_norm": 1.2484313249588013,
15
+ "learning_rate": 4e-05,
16
+ "loss": 0.7118,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0016,
21
+ "grad_norm": 1.2396782636642456,
22
+ "learning_rate": 8e-05,
23
+ "loss": 0.8189,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.0024,
28
+ "grad_norm": 0.8842036128044128,
29
+ "learning_rate": 0.00012,
30
+ "loss": 0.5522,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.0032,
35
+ "grad_norm": 0.9036827683448792,
36
+ "learning_rate": 0.00016,
37
+ "loss": 0.4924,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.004,
42
+ "grad_norm": 1.2299714088439941,
43
+ "learning_rate": 0.0002,
44
+ "loss": 0.58,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.0048,
49
+ "grad_norm": 1.3246244192123413,
50
+ "learning_rate": 0.00019885714285714287,
51
+ "loss": 0.4792,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.0056,
56
+ "grad_norm": 1.540134072303772,
57
+ "learning_rate": 0.0001977142857142857,
58
+ "loss": 0.5264,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.0064,
63
+ "grad_norm": 1.3656489849090576,
64
+ "learning_rate": 0.00019657142857142858,
65
+ "loss": 0.4013,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.0072,
70
+ "grad_norm": 1.1679350137710571,
71
+ "learning_rate": 0.00019542857142857144,
72
+ "loss": 0.3793,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.008,
77
+ "grad_norm": 1.1096352338790894,
78
+ "learning_rate": 0.0001942857142857143,
79
+ "loss": 0.4983,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.0088,
84
+ "grad_norm": 1.0913289785385132,
85
+ "learning_rate": 0.00019314285714285717,
86
+ "loss": 0.4991,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.0096,
91
+ "grad_norm": 1.1222748756408691,
92
+ "learning_rate": 0.000192,
93
+ "loss": 0.4747,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.0104,
98
+ "grad_norm": 1.1606162786483765,
99
+ "learning_rate": 0.00019085714285714287,
100
+ "loss": 0.4826,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.0112,
105
+ "grad_norm": 1.003353476524353,
106
+ "learning_rate": 0.00018971428571428573,
107
+ "loss": 0.4512,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.012,
112
+ "grad_norm": 1.3158879280090332,
113
+ "learning_rate": 0.00018857142857142857,
114
+ "loss": 0.4743,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.0128,
119
+ "grad_norm": 1.2782206535339355,
120
+ "learning_rate": 0.00018742857142857143,
121
+ "loss": 0.4539,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.0136,
126
+ "grad_norm": 1.618283987045288,
127
+ "learning_rate": 0.0001862857142857143,
128
+ "loss": 0.4132,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.0144,
133
+ "grad_norm": 1.3360353708267212,
134
+ "learning_rate": 0.00018514285714285716,
135
+ "loss": 0.5101,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.0152,
140
+ "grad_norm": 1.3629347085952759,
141
+ "learning_rate": 0.00018400000000000003,
142
+ "loss": 0.531,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.016,
147
+ "grad_norm": 2.1956729888916016,
148
+ "learning_rate": 0.00018285714285714286,
149
+ "loss": 0.4638,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.0168,
154
+ "grad_norm": 1.1625367403030396,
155
+ "learning_rate": 0.00018171428571428573,
156
+ "loss": 0.4728,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.0176,
161
+ "grad_norm": 1.1536197662353516,
162
+ "learning_rate": 0.00018057142857142857,
163
+ "loss": 0.4242,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.0184,
168
+ "grad_norm": 1.5429607629776,
169
+ "learning_rate": 0.00017942857142857143,
170
+ "loss": 0.5295,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.0192,
175
+ "grad_norm": 1.8186460733413696,
176
+ "learning_rate": 0.0001782857142857143,
177
+ "loss": 0.3945,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.02,
182
+ "grad_norm": 1.7319910526275635,
183
+ "learning_rate": 0.00017714285714285713,
184
+ "loss": 0.4291,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.0208,
189
+ "grad_norm": 1.2174618244171143,
190
+ "learning_rate": 0.00017600000000000002,
191
+ "loss": 0.4502,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.0216,
196
+ "grad_norm": 1.2327603101730347,
197
+ "learning_rate": 0.0001748571428571429,
198
+ "loss": 0.4819,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.0224,
203
+ "grad_norm": 1.1828025579452515,
204
+ "learning_rate": 0.00017371428571428572,
205
+ "loss": 0.4445,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.0232,
210
+ "grad_norm": 1.302361011505127,
211
+ "learning_rate": 0.0001725714285714286,
212
+ "loss": 0.4674,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.024,
217
+ "grad_norm": 1.158236026763916,
218
+ "learning_rate": 0.00017142857142857143,
219
+ "loss": 0.381,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.0248,
224
+ "grad_norm": 1.1804059743881226,
225
+ "learning_rate": 0.0001702857142857143,
226
+ "loss": 0.4083,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.0256,
231
+ "grad_norm": 1.4666764736175537,
232
+ "learning_rate": 0.00016914285714285715,
233
+ "loss": 0.496,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.0264,
238
+ "grad_norm": 0.9403315782546997,
239
+ "learning_rate": 0.000168,
240
+ "loss": 0.401,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.0272,
245
+ "grad_norm": 1.3564960956573486,
246
+ "learning_rate": 0.00016685714285714285,
247
+ "loss": 0.4214,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.028,
252
+ "grad_norm": 1.104662299156189,
253
+ "learning_rate": 0.00016571428571428575,
254
+ "loss": 0.3714,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.0288,
259
+ "grad_norm": 1.098190426826477,
260
+ "learning_rate": 0.00016457142857142858,
261
+ "loss": 0.3765,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.0296,
266
+ "grad_norm": 1.1176928281784058,
267
+ "learning_rate": 0.00016342857142857145,
268
+ "loss": 0.449,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.0304,
273
+ "grad_norm": 1.014857530593872,
274
+ "learning_rate": 0.00016228571428571428,
275
+ "loss": 0.3733,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.0312,
280
+ "grad_norm": 0.9619799256324768,
281
+ "learning_rate": 0.00016114285714285715,
282
+ "loss": 0.383,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.032,
287
+ "grad_norm": 1.2253310680389404,
288
+ "learning_rate": 0.00016,
289
+ "loss": 0.4304,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.0328,
294
+ "grad_norm": 1.2873166799545288,
295
+ "learning_rate": 0.00015885714285714285,
296
+ "loss": 0.4529,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.0336,
301
+ "grad_norm": 1.3297463655471802,
302
+ "learning_rate": 0.00015771428571428571,
303
+ "loss": 0.4423,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.0344,
308
+ "grad_norm": 1.1202378273010254,
309
+ "learning_rate": 0.00015657142857142858,
310
+ "loss": 0.4976,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.0352,
315
+ "grad_norm": 1.1365331411361694,
316
+ "learning_rate": 0.00015542857142857144,
317
+ "loss": 0.3866,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.036,
322
+ "grad_norm": 1.1100164651870728,
323
+ "learning_rate": 0.0001542857142857143,
324
+ "loss": 0.4384,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.0368,
329
+ "grad_norm": 1.0640782117843628,
330
+ "learning_rate": 0.00015314285714285714,
331
+ "loss": 0.3889,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.0376,
336
+ "grad_norm": 1.3084195852279663,
337
+ "learning_rate": 0.000152,
338
+ "loss": 0.4482,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.0384,
343
+ "grad_norm": 1.3079781532287598,
344
+ "learning_rate": 0.00015085714285714287,
345
+ "loss": 0.4958,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.0392,
350
+ "grad_norm": 1.1769342422485352,
351
+ "learning_rate": 0.0001497142857142857,
352
+ "loss": 0.4159,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.04,
357
+ "grad_norm": 1.0382602214813232,
358
+ "learning_rate": 0.00014857142857142857,
359
+ "loss": 0.4193,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.0408,
364
+ "grad_norm": 1.0692741870880127,
365
+ "learning_rate": 0.00014742857142857144,
366
+ "loss": 0.4265,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.0416,
371
+ "grad_norm": 0.9739915728569031,
372
+ "learning_rate": 0.0001462857142857143,
373
+ "loss": 0.3902,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.0424,
378
+ "grad_norm": 1.0809895992279053,
379
+ "learning_rate": 0.00014514285714285717,
380
+ "loss": 0.4059,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.0432,
385
+ "grad_norm": 1.1480313539505005,
386
+ "learning_rate": 0.000144,
387
+ "loss": 0.4432,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.044,
392
+ "grad_norm": 0.8420342803001404,
393
+ "learning_rate": 0.00014285714285714287,
394
+ "loss": 0.3317,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.0448,
399
+ "grad_norm": 0.8640209436416626,
400
+ "learning_rate": 0.0001417142857142857,
401
+ "loss": 0.3639,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.0456,
406
+ "grad_norm": 1.0063021183013916,
407
+ "learning_rate": 0.00014057142857142857,
408
+ "loss": 0.3659,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.0464,
413
+ "grad_norm": 0.9292585253715515,
414
+ "learning_rate": 0.00013942857142857143,
415
+ "loss": 0.3588,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.0472,
420
+ "grad_norm": 0.9295415282249451,
421
+ "learning_rate": 0.0001382857142857143,
422
+ "loss": 0.3516,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.048,
427
+ "grad_norm": 1.1771010160446167,
428
+ "learning_rate": 0.00013714285714285716,
429
+ "loss": 0.3753,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.0488,
434
+ "grad_norm": 1.0638577938079834,
435
+ "learning_rate": 0.00013600000000000003,
436
+ "loss": 0.3609,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.0496,
441
+ "grad_norm": 1.1870827674865723,
442
+ "learning_rate": 0.00013485714285714286,
443
+ "loss": 0.4136,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.0504,
448
+ "grad_norm": 1.2225092649459839,
449
+ "learning_rate": 0.00013371428571428573,
450
+ "loss": 0.3917,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.0512,
455
+ "grad_norm": 1.169294834136963,
456
+ "learning_rate": 0.00013257142857142856,
457
+ "loss": 0.381,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.052,
462
+ "grad_norm": 0.9767704010009766,
463
+ "learning_rate": 0.00013142857142857143,
464
+ "loss": 0.3635,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.0528,
469
+ "grad_norm": 1.1561055183410645,
470
+ "learning_rate": 0.0001302857142857143,
471
+ "loss": 0.3723,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.0536,
476
+ "grad_norm": 1.2369543313980103,
477
+ "learning_rate": 0.00012914285714285713,
478
+ "loss": 0.4142,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.0544,
483
+ "grad_norm": 1.3053923845291138,
484
+ "learning_rate": 0.00012800000000000002,
485
+ "loss": 0.3437,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.0552,
490
+ "grad_norm": 1.0821707248687744,
491
+ "learning_rate": 0.00012685714285714286,
492
+ "loss": 0.3765,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.056,
497
+ "grad_norm": 1.3041565418243408,
498
+ "learning_rate": 0.00012571428571428572,
499
+ "loss": 0.4846,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.0568,
504
+ "grad_norm": 1.1836012601852417,
505
+ "learning_rate": 0.0001245714285714286,
506
+ "loss": 0.3651,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.0576,
511
+ "grad_norm": 1.1629185676574707,
512
+ "learning_rate": 0.00012342857142857142,
513
+ "loss": 0.3126,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.0584,
518
+ "grad_norm": 1.2542935609817505,
519
+ "learning_rate": 0.0001222857142857143,
520
+ "loss": 0.3796,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.0592,
525
+ "grad_norm": 1.2257918119430542,
526
+ "learning_rate": 0.00012114285714285715,
527
+ "loss": 0.3752,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.06,
532
+ "grad_norm": 1.0555886030197144,
533
+ "learning_rate": 0.00012,
534
+ "loss": 0.3954,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.0608,
539
+ "grad_norm": 1.230891227722168,
540
+ "learning_rate": 0.00011885714285714287,
541
+ "loss": 0.3875,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.0616,
546
+ "grad_norm": 0.8854696154594421,
547
+ "learning_rate": 0.0001177142857142857,
548
+ "loss": 0.3118,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.0624,
553
+ "grad_norm": 1.0647600889205933,
554
+ "learning_rate": 0.00011657142857142858,
555
+ "loss": 0.3555,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.0632,
560
+ "grad_norm": 0.9846012592315674,
561
+ "learning_rate": 0.00011542857142857145,
562
+ "loss": 0.3608,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.064,
567
+ "grad_norm": 1.286117434501648,
568
+ "learning_rate": 0.00011428571428571428,
569
+ "loss": 0.3681,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.0648,
574
+ "grad_norm": 0.9961950182914734,
575
+ "learning_rate": 0.00011314285714285715,
576
+ "loss": 0.3476,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.0656,
581
+ "grad_norm": 0.9044762849807739,
582
+ "learning_rate": 0.00011200000000000001,
583
+ "loss": 0.3652,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.0664,
588
+ "grad_norm": 1.3212488889694214,
589
+ "learning_rate": 0.00011085714285714286,
590
+ "loss": 0.371,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.0672,
595
+ "grad_norm": 1.1521120071411133,
596
+ "learning_rate": 0.00010971428571428573,
597
+ "loss": 0.3659,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.068,
602
+ "grad_norm": 0.9962939620018005,
603
+ "learning_rate": 0.00010857142857142856,
604
+ "loss": 0.3525,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.0688,
609
+ "grad_norm": 0.939199686050415,
610
+ "learning_rate": 0.00010742857142857143,
611
+ "loss": 0.3164,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.0696,
616
+ "grad_norm": 1.098573088645935,
617
+ "learning_rate": 0.0001062857142857143,
618
+ "loss": 0.3656,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.0704,
623
+ "grad_norm": 1.000960350036621,
624
+ "learning_rate": 0.00010514285714285714,
625
+ "loss": 0.3685,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.0712,
630
+ "grad_norm": 0.980912446975708,
631
+ "learning_rate": 0.00010400000000000001,
632
+ "loss": 0.3632,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.072,
637
+ "grad_norm": 1.2877452373504639,
638
+ "learning_rate": 0.00010285714285714286,
639
+ "loss": 0.4223,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.0728,
644
+ "grad_norm": 1.1124482154846191,
645
+ "learning_rate": 0.00010171428571428572,
646
+ "loss": 0.3475,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.0736,
651
+ "grad_norm": 1.0587921142578125,
652
+ "learning_rate": 0.00010057142857142859,
653
+ "loss": 0.3612,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.0744,
658
+ "grad_norm": 0.9964851140975952,
659
+ "learning_rate": 9.942857142857144e-05,
660
+ "loss": 0.3435,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.0752,
665
+ "grad_norm": 1.0694661140441895,
666
+ "learning_rate": 9.828571428571429e-05,
667
+ "loss": 0.3709,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.076,
672
+ "grad_norm": 1.0262457132339478,
673
+ "learning_rate": 9.714285714285715e-05,
674
+ "loss": 0.3496,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.0768,
679
+ "grad_norm": 0.9541298151016235,
680
+ "learning_rate": 9.6e-05,
681
+ "loss": 0.3491,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.0776,
686
+ "grad_norm": 1.0212255716323853,
687
+ "learning_rate": 9.485714285714287e-05,
688
+ "loss": 0.3474,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.0784,
693
+ "grad_norm": 0.992710292339325,
694
+ "learning_rate": 9.371428571428572e-05,
695
+ "loss": 0.3331,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.0792,
700
+ "grad_norm": 1.0837984085083008,
701
+ "learning_rate": 9.257142857142858e-05,
702
+ "loss": 0.5021,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.08,
707
+ "grad_norm": 1.1747627258300781,
708
+ "learning_rate": 9.142857142857143e-05,
709
+ "loss": 0.3499,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.0808,
714
+ "grad_norm": 0.9934831261634827,
715
+ "learning_rate": 9.028571428571428e-05,
716
+ "loss": 0.3632,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.0816,
721
+ "grad_norm": 0.9274324178695679,
722
+ "learning_rate": 8.914285714285715e-05,
723
+ "loss": 0.3291,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.0824,
728
+ "grad_norm": 1.0825073719024658,
729
+ "learning_rate": 8.800000000000001e-05,
730
+ "loss": 0.3972,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.0832,
735
+ "grad_norm": 0.9639647603034973,
736
+ "learning_rate": 8.685714285714286e-05,
737
+ "loss": 0.3747,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.084,
742
+ "grad_norm": 1.336667776107788,
743
+ "learning_rate": 8.571428571428571e-05,
744
+ "loss": 0.3836,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.0848,
749
+ "grad_norm": 1.1072027683258057,
750
+ "learning_rate": 8.457142857142858e-05,
751
+ "loss": 0.3405,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.0856,
756
+ "grad_norm": 1.1694585084915161,
757
+ "learning_rate": 8.342857142857143e-05,
758
+ "loss": 0.3752,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.0864,
763
+ "grad_norm": 1.0039108991622925,
764
+ "learning_rate": 8.228571428571429e-05,
765
+ "loss": 0.3464,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.0872,
770
+ "grad_norm": 0.9793558716773987,
771
+ "learning_rate": 8.114285714285714e-05,
772
+ "loss": 0.3062,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.088,
777
+ "grad_norm": 0.8974325060844421,
778
+ "learning_rate": 8e-05,
779
+ "loss": 0.3015,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.0888,
784
+ "grad_norm": 1.0261926651000977,
785
+ "learning_rate": 7.885714285714286e-05,
786
+ "loss": 0.3834,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.0896,
791
+ "grad_norm": 1.844468116760254,
792
+ "learning_rate": 7.771428571428572e-05,
793
+ "loss": 0.4882,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.0904,
798
+ "grad_norm": 0.9161112904548645,
799
+ "learning_rate": 7.657142857142857e-05,
800
+ "loss": 0.3179,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.0912,
805
+ "grad_norm": 1.3449184894561768,
806
+ "learning_rate": 7.542857142857144e-05,
807
+ "loss": 0.4077,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.092,
812
+ "grad_norm": 0.9990420341491699,
813
+ "learning_rate": 7.428571428571429e-05,
814
+ "loss": 0.3093,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.0928,
819
+ "grad_norm": 1.0407809019088745,
820
+ "learning_rate": 7.314285714285715e-05,
821
+ "loss": 0.3575,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.0936,
826
+ "grad_norm": 1.1811689138412476,
827
+ "learning_rate": 7.2e-05,
828
+ "loss": 0.4108,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.0944,
833
+ "grad_norm": 1.0623583793640137,
834
+ "learning_rate": 7.085714285714285e-05,
835
+ "loss": 0.3481,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.0952,
840
+ "grad_norm": 1.0132906436920166,
841
+ "learning_rate": 6.971428571428572e-05,
842
+ "loss": 0.3489,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.096,
847
+ "grad_norm": 0.7905811667442322,
848
+ "learning_rate": 6.857142857142858e-05,
849
+ "loss": 0.285,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.0968,
854
+ "grad_norm": 1.0692896842956543,
855
+ "learning_rate": 6.742857142857143e-05,
856
+ "loss": 0.3983,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.0976,
861
+ "grad_norm": 1.1936224699020386,
862
+ "learning_rate": 6.628571428571428e-05,
863
+ "loss": 0.3634,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.0984,
868
+ "grad_norm": 1.1843299865722656,
869
+ "learning_rate": 6.514285714285715e-05,
870
+ "loss": 0.3461,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.0992,
875
+ "grad_norm": 0.8762491941452026,
876
+ "learning_rate": 6.400000000000001e-05,
877
+ "loss": 0.2921,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.1,
882
+ "grad_norm": 0.8600658178329468,
883
+ "learning_rate": 6.285714285714286e-05,
884
+ "loss": 0.2707,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.1008,
889
+ "grad_norm": 1.1771011352539062,
890
+ "learning_rate": 6.171428571428571e-05,
891
+ "loss": 0.3786,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.1016,
896
+ "grad_norm": 1.2326810359954834,
897
+ "learning_rate": 6.0571428571428576e-05,
898
+ "loss": 0.4223,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.1024,
903
+ "grad_norm": 0.9957399964332581,
904
+ "learning_rate": 5.9428571428571434e-05,
905
+ "loss": 0.3816,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.1032,
910
+ "grad_norm": 1.1350103616714478,
911
+ "learning_rate": 5.828571428571429e-05,
912
+ "loss": 0.3738,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.104,
917
+ "grad_norm": 0.9324225187301636,
918
+ "learning_rate": 5.714285714285714e-05,
919
+ "loss": 0.3371,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.1048,
924
+ "grad_norm": 1.0233099460601807,
925
+ "learning_rate": 5.6000000000000006e-05,
926
+ "loss": 0.356,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.1056,
931
+ "grad_norm": 0.9429035782814026,
932
+ "learning_rate": 5.485714285714286e-05,
933
+ "loss": 0.3153,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.1064,
938
+ "grad_norm": 0.9844772219657898,
939
+ "learning_rate": 5.3714285714285714e-05,
940
+ "loss": 0.3266,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.1072,
945
+ "grad_norm": 0.8643121123313904,
946
+ "learning_rate": 5.257142857142857e-05,
947
+ "loss": 0.2885,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.108,
952
+ "grad_norm": 1.1424559354782104,
953
+ "learning_rate": 5.142857142857143e-05,
954
+ "loss": 0.3934,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.1088,
959
+ "grad_norm": 0.8285444378852844,
960
+ "learning_rate": 5.028571428571429e-05,
961
+ "loss": 0.2926,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.1096,
966
+ "grad_norm": 0.9021345376968384,
967
+ "learning_rate": 4.9142857142857144e-05,
968
+ "loss": 0.3096,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.1104,
973
+ "grad_norm": 0.8790440559387207,
974
+ "learning_rate": 4.8e-05,
975
+ "loss": 0.3336,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.1112,
980
+ "grad_norm": 0.8108084201812744,
981
+ "learning_rate": 4.685714285714286e-05,
982
+ "loss": 0.289,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.112,
987
+ "grad_norm": 0.9260637164115906,
988
+ "learning_rate": 4.5714285714285716e-05,
989
+ "loss": 0.4126,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.1128,
994
+ "grad_norm": 0.9265069365501404,
995
+ "learning_rate": 4.4571428571428574e-05,
996
+ "loss": 0.3178,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.1136,
1001
+ "grad_norm": 1.2468631267547607,
1002
+ "learning_rate": 4.342857142857143e-05,
1003
+ "loss": 0.3889,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.1144,
1008
+ "grad_norm": 0.8827513456344604,
1009
+ "learning_rate": 4.228571428571429e-05,
1010
+ "loss": 0.3165,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.1152,
1015
+ "grad_norm": 1.069765329360962,
1016
+ "learning_rate": 4.1142857142857146e-05,
1017
+ "loss": 0.4032,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.116,
1022
+ "grad_norm": 0.9694308042526245,
1023
+ "learning_rate": 4e-05,
1024
+ "loss": 0.3199,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.1168,
1029
+ "grad_norm": 0.9222254753112793,
1030
+ "learning_rate": 3.885714285714286e-05,
1031
+ "loss": 0.3042,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.1176,
1036
+ "grad_norm": 0.9769037365913391,
1037
+ "learning_rate": 3.771428571428572e-05,
1038
+ "loss": 0.3338,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.1184,
1043
+ "grad_norm": 0.9615337252616882,
1044
+ "learning_rate": 3.6571428571428576e-05,
1045
+ "loss": 0.3822,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.1192,
1050
+ "grad_norm": 0.8975436091423035,
1051
+ "learning_rate": 3.5428571428571426e-05,
1052
+ "loss": 0.3066,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.12,
1057
+ "grad_norm": 1.0323967933654785,
1058
+ "learning_rate": 3.428571428571429e-05,
1059
+ "loss": 0.3446,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.1208,
1064
+ "grad_norm": 0.7756757736206055,
1065
+ "learning_rate": 3.314285714285714e-05,
1066
+ "loss": 0.2556,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.1216,
1071
+ "grad_norm": 1.119676947593689,
1072
+ "learning_rate": 3.2000000000000005e-05,
1073
+ "loss": 0.3492,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.1224,
1078
+ "grad_norm": 1.0270119905471802,
1079
+ "learning_rate": 3.0857142857142856e-05,
1080
+ "loss": 0.3593,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.1232,
1085
+ "grad_norm": 0.7868067026138306,
1086
+ "learning_rate": 2.9714285714285717e-05,
1087
+ "loss": 0.2695,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.124,
1092
+ "grad_norm": 1.1581284999847412,
1093
+ "learning_rate": 2.857142857142857e-05,
1094
+ "loss": 0.3769,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.1248,
1099
+ "grad_norm": 0.9818435311317444,
1100
+ "learning_rate": 2.742857142857143e-05,
1101
+ "loss": 0.3319,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.1256,
1106
+ "grad_norm": 1.6817810535430908,
1107
+ "learning_rate": 2.6285714285714286e-05,
1108
+ "loss": 0.4218,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.1264,
1113
+ "grad_norm": 0.9001001119613647,
1114
+ "learning_rate": 2.5142857142857147e-05,
1115
+ "loss": 0.2972,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.1272,
1120
+ "grad_norm": 1.030470848083496,
1121
+ "learning_rate": 2.4e-05,
1122
+ "loss": 0.3308,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.128,
1127
+ "grad_norm": 0.9055750370025635,
1128
+ "learning_rate": 2.2857142857142858e-05,
1129
+ "loss": 0.3625,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.1288,
1134
+ "grad_norm": 0.8893150091171265,
1135
+ "learning_rate": 2.1714285714285715e-05,
1136
+ "loss": 0.3002,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.1296,
1141
+ "grad_norm": 0.8902642130851746,
1142
+ "learning_rate": 2.0571428571428573e-05,
1143
+ "loss": 0.2854,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.1304,
1148
+ "grad_norm": 0.9507644772529602,
1149
+ "learning_rate": 1.942857142857143e-05,
1150
+ "loss": 0.3117,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.1312,
1155
+ "grad_norm": 0.9474930763244629,
1156
+ "learning_rate": 1.8285714285714288e-05,
1157
+ "loss": 0.3149,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.132,
1162
+ "grad_norm": 1.1699720621109009,
1163
+ "learning_rate": 1.7142857142857145e-05,
1164
+ "loss": 0.3471,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.1328,
1169
+ "grad_norm": 0.9667317271232605,
1170
+ "learning_rate": 1.6000000000000003e-05,
1171
+ "loss": 0.3164,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.1336,
1176
+ "grad_norm": 1.0271855592727661,
1177
+ "learning_rate": 1.4857142857142858e-05,
1178
+ "loss": 0.327,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.1344,
1183
+ "grad_norm": 1.0459516048431396,
1184
+ "learning_rate": 1.3714285714285716e-05,
1185
+ "loss": 0.3333,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.1352,
1190
+ "grad_norm": 0.9808986783027649,
1191
+ "learning_rate": 1.2571428571428573e-05,
1192
+ "loss": 0.2996,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.136,
1197
+ "grad_norm": 0.9472062587738037,
1198
+ "learning_rate": 1.1428571428571429e-05,
1199
+ "loss": 0.289,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.1368,
1204
+ "grad_norm": 1.0804734230041504,
1205
+ "learning_rate": 1.0285714285714286e-05,
1206
+ "loss": 0.3353,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.1376,
1211
+ "grad_norm": 0.9845679402351379,
1212
+ "learning_rate": 9.142857142857144e-06,
1213
+ "loss": 0.352,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.1384,
1218
+ "grad_norm": 1.3011351823806763,
1219
+ "learning_rate": 8.000000000000001e-06,
1220
+ "loss": 0.4186,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.1392,
1225
+ "grad_norm": 1.0187007188796997,
1226
+ "learning_rate": 6.857142857142858e-06,
1227
+ "loss": 0.3409,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.14,
1232
+ "grad_norm": 1.0254411697387695,
1233
+ "learning_rate": 5.7142857142857145e-06,
1234
+ "loss": 0.3577,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.1408,
1239
+ "grad_norm": 1.2106192111968994,
1240
+ "learning_rate": 4.571428571428572e-06,
1241
+ "loss": 0.3982,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.1416,
1246
+ "grad_norm": 1.1773263216018677,
1247
+ "learning_rate": 3.428571428571429e-06,
1248
+ "loss": 0.4192,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.1424,
1253
+ "grad_norm": 1.0779730081558228,
1254
+ "learning_rate": 2.285714285714286e-06,
1255
+ "loss": 0.371,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.1432,
1260
+ "grad_norm": 1.0007537603378296,
1261
+ "learning_rate": 1.142857142857143e-06,
1262
+ "loss": 0.402,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.144,
1267
+ "grad_norm": 0.9963799715042114,
1268
+ "learning_rate": 0.0,
1269
+ "loss": 0.4271,
1270
+ "step": 180
1271
+ }
1272
+ ],
1273
+ "logging_steps": 1,
1274
+ "max_steps": 180,
1275
+ "num_input_tokens_seen": 0,
1276
+ "num_train_epochs": 1,
1277
+ "save_steps": 500,
1278
+ "stateful_callbacks": {
1279
+ "TrainerControl": {
1280
+ "args": {
1281
+ "should_epoch_stop": false,
1282
+ "should_evaluate": false,
1283
+ "should_log": false,
1284
+ "should_save": true,
1285
+ "should_training_stop": true
1286
+ },
1287
+ "attributes": {}
1288
+ }
1289
+ },
1290
+ "total_flos": 2.5709329524916224e+16,
1291
+ "train_batch_size": 2,
1292
+ "trial_name": null,
1293
+ "trial_params": null
1294
+ }
checkpoint-180/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3ce913d8bc05c56e47a40b880b5b7e58b488777322d590faaba63f85b18db8
3
+ size 5624
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "<|im_end|>",
4
+ "pad_token": "[control_768]",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff