Arthur-Tsai commited on
Commit
bda773e
·
verified ·
1 Parent(s): b3fd6be

End of training

Browse files
README.md ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: histv4_ftis_noPretrain_0329
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # histv4_ftis_noPretrain_0329
16
+
17
+ This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 7.6722
20
+ - Accuracy: 0.7441
21
+ - Macro F1: 0.5214
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 4
43
+ - seed: 42
44
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 6700
47
+ - training_steps: 134000
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
52
+ |:-------------:|:--------:|:-----:|:---------------:|:--------:|:--------:|
53
+ | 40.1971 | 2.0002 | 100 | 49.5917 | 0.0187 | 0.0142 |
54
+ | 25.506 | 5.0002 | 200 | 60.8130 | 0.0210 | 0.0151 |
55
+ | 13.9676 | 8.0002 | 300 | 88.0646 | 0.0841 | 0.0385 |
56
+ | 8.3744 | 11.0002 | 400 | 123.4435 | 0.3548 | 0.1052 |
57
+ | 6.4561 | 14.0002 | 500 | 160.4827 | 0.4859 | 0.1259 |
58
+ | 5.5832 | 17.0002 | 600 | 153.4462 | 0.5135 | 0.1328 |
59
+ | 5.204 | 20.0001 | 700 | 174.0246 | 0.5325 | 0.1376 |
60
+ | 4.8033 | 23.0001 | 800 | 158.0325 | 0.5515 | 0.1446 |
61
+ | 4.2819 | 26.0001 | 900 | 124.4677 | 0.5627 | 0.1492 |
62
+ | 3.9917 | 29.0001 | 1000 | 114.0357 | 0.5781 | 0.1541 |
63
+ | 3.5071 | 32.0001 | 1100 | 95.2226 | 0.5896 | 0.1604 |
64
+ | 3.1844 | 35.0001 | 1200 | 79.5344 | 0.5977 | 0.1669 |
65
+ | 2.9019 | 38.0001 | 1300 | 64.7666 | 0.5979 | 0.1680 |
66
+ | 2.7426 | 41.0000 | 1400 | 56.0299 | 0.6076 | 0.1728 |
67
+ | 2.5503 | 44.0000 | 1500 | 46.0177 | 0.6169 | 0.1877 |
68
+ | 2.3427 | 47.0000 | 1600 | 41.1723 | 0.6198 | 0.1940 |
69
+ | 2.2842 | 49.0003 | 1700 | 36.7908 | 0.6237 | 0.1967 |
70
+ | 2.0698 | 52.0002 | 1800 | 26.6686 | 0.6259 | 0.2145 |
71
+ | 2.0716 | 55.0002 | 1900 | 23.1456 | 0.6328 | 0.2139 |
72
+ | 1.9467 | 58.0002 | 2000 | 21.6321 | 0.6365 | 0.2352 |
73
+ | 1.8558 | 61.0002 | 2100 | 22.3247 | 0.6305 | 0.2411 |
74
+ | 1.78 | 64.0002 | 2200 | 17.6475 | 0.6360 | 0.2516 |
75
+ | 1.7189 | 67.0002 | 2300 | 16.4899 | 0.6380 | 0.2655 |
76
+ | 1.5846 | 70.0001 | 2400 | 15.9655 | 0.6336 | 0.2942 |
77
+ | 1.5964 | 73.0001 | 2500 | 13.9932 | 0.6490 | 0.2918 |
78
+ | 1.4888 | 76.0001 | 2600 | 11.5909 | 0.6574 | 0.3100 |
79
+ | 1.374 | 79.0001 | 2700 | 12.6932 | 0.6567 | 0.3170 |
80
+ | 1.3021 | 82.0001 | 2800 | 13.1982 | 0.6655 | 0.3449 |
81
+ | 1.199 | 85.0001 | 2900 | 10.6424 | 0.6573 | 0.3400 |
82
+ | 1.1354 | 88.0001 | 3000 | 9.9082 | 0.6769 | 0.3621 |
83
+ | 1.0886 | 91.0000 | 3100 | 9.4912 | 0.6808 | 0.3698 |
84
+ | 0.9852 | 94.0000 | 3200 | 10.1213 | 0.6682 | 0.3608 |
85
+ | 0.9585 | 97.0000 | 3300 | 9.3651 | 0.6844 | 0.3843 |
86
+ | 0.89 | 99.0003 | 3400 | 9.8908 | 0.6811 | 0.3999 |
87
+ | 0.8169 | 102.0002 | 3500 | 9.5139 | 0.6828 | 0.4147 |
88
+ | 0.7947 | 105.0002 | 3600 | 10.5865 | 0.6793 | 0.4022 |
89
+ | 0.7128 | 108.0002 | 3700 | 10.8977 | 0.6846 | 0.4203 |
90
+ | 0.67 | 111.0002 | 3800 | 12.5663 | 0.6801 | 0.4150 |
91
+ | 0.6065 | 114.0002 | 3900 | 13.4195 | 0.6859 | 0.4213 |
92
+ | 0.5864 | 117.0002 | 4000 | 13.9105 | 0.6919 | 0.4265 |
93
+ | 0.5399 | 120.0001 | 4100 | 13.4893 | 0.6920 | 0.4267 |
94
+ | 0.5066 | 123.0001 | 4200 | 16.5433 | 0.6860 | 0.4394 |
95
+ | 0.4817 | 126.0001 | 4300 | 17.2283 | 0.6923 | 0.4431 |
96
+ | 0.4463 | 129.0001 | 4400 | 16.4376 | 0.6973 | 0.4490 |
97
+ | 0.4189 | 132.0001 | 4500 | 17.6739 | 0.6892 | 0.4440 |
98
+ | 0.4085 | 135.0001 | 4600 | 19.6356 | 0.6927 | 0.4482 |
99
+ | 0.3789 | 138.0001 | 4700 | 19.8878 | 0.6974 | 0.4530 |
100
+ | 0.3677 | 141.0000 | 4800 | 19.8356 | 0.6957 | 0.4518 |
101
+ | 0.3389 | 144.0000 | 4900 | 20.1772 | 0.7008 | 0.4595 |
102
+ | 0.3165 | 147.0000 | 5000 | 19.0960 | 0.6986 | 0.4484 |
103
+ | 0.3185 | 149.0003 | 5100 | 21.0523 | 0.6855 | 0.4481 |
104
+ | 0.3018 | 152.0002 | 5200 | 22.5081 | 0.6875 | 0.4574 |
105
+ | 0.2767 | 155.0002 | 5300 | 23.0035 | 0.7000 | 0.4616 |
106
+ | 0.2532 | 158.0002 | 5400 | 25.1864 | 0.6979 | 0.4598 |
107
+ | 0.2394 | 161.0002 | 5500 | 23.4640 | 0.6938 | 0.4660 |
108
+ | 0.2211 | 164.0002 | 5600 | 24.6422 | 0.6941 | 0.4551 |
109
+ | 0.2066 | 167.0002 | 5700 | 26.8428 | 0.7002 | 0.4633 |
110
+ | 0.2099 | 170.0001 | 5800 | 29.4277 | 0.6989 | 0.4665 |
111
+ | 0.1991 | 173.0001 | 5900 | 24.5748 | 0.6951 | 0.4638 |
112
+ | 0.1839 | 176.0001 | 6000 | 26.8728 | 0.6985 | 0.4647 |
113
+ | 0.1845 | 179.0001 | 6100 | 23.4900 | 0.7019 | 0.4779 |
114
+ | 0.1561 | 182.0001 | 6200 | 27.2313 | 0.7006 | 0.4668 |
115
+ | 0.158 | 185.0001 | 6300 | 27.4709 | 0.7011 | 0.4701 |
116
+ | 0.1478 | 188.0001 | 6400 | 27.6506 | 0.7055 | 0.4749 |
117
+ | 0.1388 | 191.0000 | 6500 | 32.1576 | 0.7020 | 0.4783 |
118
+ | 0.1284 | 194.0000 | 6600 | 29.8000 | 0.7044 | 0.4712 |
119
+ | 0.1224 | 197.0000 | 6700 | 30.6133 | 0.7057 | 0.4781 |
120
+ | 0.1181 | 199.0003 | 6800 | 30.7620 | 0.7126 | 0.4787 |
121
+ | 0.1044 | 202.0002 | 6900 | 33.3423 | 0.7093 | 0.4798 |
122
+ | 0.1002 | 205.0002 | 7000 | 32.1031 | 0.7076 | 0.4817 |
123
+ | 0.1002 | 208.0002 | 7100 | 31.1255 | 0.7102 | 0.4829 |
124
+ | 0.0889 | 211.0002 | 7200 | 33.0451 | 0.7056 | 0.4738 |
125
+ | 0.0758 | 214.0002 | 7300 | 30.8369 | 0.7091 | 0.4865 |
126
+ | 0.082 | 217.0002 | 7400 | 30.5260 | 0.7086 | 0.4855 |
127
+ | 0.0674 | 220.0001 | 7500 | 26.2500 | 0.7109 | 0.4822 |
128
+ | 0.0738 | 223.0001 | 7600 | 29.8234 | 0.7106 | 0.4824 |
129
+ | 0.0704 | 226.0001 | 7700 | 25.1236 | 0.7151 | 0.4890 |
130
+ | 0.0641 | 229.0001 | 7800 | 24.1860 | 0.7081 | 0.4896 |
131
+ | 0.0641 | 232.0001 | 7900 | 27.7325 | 0.7152 | 0.4964 |
132
+ | 0.0578 | 235.0001 | 8000 | 28.8689 | 0.7125 | 0.4867 |
133
+ | 0.0491 | 238.0001 | 8100 | 23.9659 | 0.7157 | 0.4875 |
134
+ | 0.0481 | 241.0000 | 8200 | 26.1008 | 0.7168 | 0.4959 |
135
+ | 0.0547 | 244.0000 | 8300 | 24.5199 | 0.7123 | 0.4844 |
136
+ | 0.0462 | 247.0000 | 8400 | 24.3549 | 0.7120 | 0.4815 |
137
+ | 0.0401 | 249.0003 | 8500 | 22.2205 | 0.7183 | 0.4923 |
138
+ | 0.0412 | 252.0002 | 8600 | 23.5583 | 0.7170 | 0.4898 |
139
+ | 0.0388 | 255.0002 | 8700 | 21.2779 | 0.7151 | 0.4864 |
140
+ | 0.0401 | 258.0002 | 8800 | 22.1843 | 0.7147 | 0.4924 |
141
+ | 0.0389 | 261.0002 | 8900 | 18.1102 | 0.7115 | 0.4899 |
142
+ | 0.0335 | 264.0002 | 9000 | 20.1005 | 0.7159 | 0.4958 |
143
+ | 0.0358 | 267.0002 | 9100 | 21.1070 | 0.7187 | 0.4930 |
144
+ | 0.0366 | 270.0001 | 9200 | 15.6221 | 0.7118 | 0.4848 |
145
+ | 0.0282 | 273.0001 | 9300 | 14.5914 | 0.7150 | 0.4924 |
146
+ | 0.0288 | 276.0001 | 9400 | 15.4526 | 0.7154 | 0.4900 |
147
+ | 0.0293 | 279.0001 | 9500 | 14.8341 | 0.7177 | 0.4920 |
148
+ | 0.0367 | 282.0001 | 9600 | 16.0126 | 0.7166 | 0.4943 |
149
+ | 0.0317 | 285.0001 | 9700 | 17.4912 | 0.7188 | 0.4992 |
150
+ | 0.0277 | 288.0001 | 9800 | 17.5252 | 0.7166 | 0.4944 |
151
+ | 0.0292 | 291.0000 | 9900 | 15.7037 | 0.7158 | 0.4894 |
152
+ | 0.0315 | 294.0000 | 10000 | 15.6731 | 0.7240 | 0.4990 |
153
+ | 0.0318 | 297.0000 | 10100 | 15.6428 | 0.7187 | 0.5009 |
154
+ | 0.062 | 299.0003 | 10200 | 13.3576 | 0.7223 | 0.4976 |
155
+ | 0.0377 | 302.0002 | 10300 | 11.7304 | 0.7190 | 0.4960 |
156
+ | 0.0234 | 305.0002 | 10400 | 11.7102 | 0.7247 | 0.4989 |
157
+ | 0.0192 | 308.0002 | 10500 | 11.6284 | 0.7243 | 0.5018 |
158
+ | 0.0172 | 311.0002 | 10600 | 10.8684 | 0.7231 | 0.5029 |
159
+ | 0.0177 | 314.0002 | 10700 | 12.0791 | 0.7224 | 0.4996 |
160
+ | 0.0167 | 317.0002 | 10800 | 10.4226 | 0.7230 | 0.4983 |
161
+ | 0.0176 | 320.0001 | 10900 | 11.0993 | 0.7223 | 0.5028 |
162
+ | 0.0211 | 323.0001 | 11000 | 9.2609 | 0.7208 | 0.4945 |
163
+ | 0.0268 | 326.0001 | 11100 | 9.7199 | 0.7156 | 0.4976 |
164
+ | 0.0234 | 329.0001 | 11200 | 9.0146 | 0.7213 | 0.5027 |
165
+ | 0.0198 | 332.0001 | 11300 | 9.7334 | 0.7231 | 0.5036 |
166
+ | 0.0152 | 335.0001 | 11400 | 10.3637 | 0.7244 | 0.5014 |
167
+ | 0.0136 | 338.0001 | 11500 | 10.1109 | 0.7251 | 0.5047 |
168
+ | 0.0144 | 341.0000 | 11600 | 9.7085 | 0.7234 | 0.4960 |
169
+ | 0.0132 | 344.0000 | 11700 | 8.4300 | 0.7233 | 0.5025 |
170
+ | 0.0119 | 347.0000 | 11800 | 7.6603 | 0.7242 | 0.5007 |
171
+ | 0.0108 | 349.0003 | 11900 | 7.7541 | 0.7257 | 0.5038 |
172
+ | 0.0279 | 352.0002 | 12000 | 6.7787 | 0.7218 | 0.4906 |
173
+ | 0.0316 | 355.0002 | 12100 | 7.3352 | 0.7259 | 0.5040 |
174
+ | 0.0321 | 358.0002 | 12200 | 9.0170 | 0.7185 | 0.4995 |
175
+ | 0.0205 | 361.0002 | 12300 | 9.5325 | 0.7250 | 0.5031 |
176
+ | 0.0185 | 364.0002 | 12400 | 11.0182 | 0.7235 | 0.5008 |
177
+ | 0.0125 | 367.0002 | 12500 | 8.4345 | 0.7291 | 0.5035 |
178
+ | 0.0091 | 370.0001 | 12600 | 8.0410 | 0.7292 | 0.5058 |
179
+ | 0.0095 | 373.0001 | 12700 | 7.5414 | 0.7304 | 0.5077 |
180
+ | 0.0083 | 376.0001 | 12800 | 7.8388 | 0.7308 | 0.5068 |
181
+ | 0.0079 | 379.0001 | 12900 | 8.0845 | 0.7297 | 0.5037 |
182
+ | 0.0101 | 382.0001 | 13000 | 7.7481 | 0.7306 | 0.5059 |
183
+ | 0.0119 | 385.0001 | 13100 | 6.6692 | 0.7288 | 0.5059 |
184
+ | 0.0101 | 388.0001 | 13200 | 6.3796 | 0.7315 | 0.5097 |
185
+ | 0.0165 | 391.0000 | 13300 | 6.5783 | 0.7320 | 0.5072 |
186
+ | 0.0137 | 394.0000 | 13400 | 7.1290 | 0.7274 | 0.5044 |
187
+ | 0.0087 | 397.0000 | 13500 | 7.9018 | 0.7306 | 0.5090 |
188
+ | 0.0074 | 399.0003 | 13600 | 6.9974 | 0.7300 | 0.5078 |
189
+ | 0.0063 | 402.0002 | 13700 | 6.2607 | 0.7276 | 0.5000 |
190
+ | 0.0067 | 405.0002 | 13800 | 7.3472 | 0.7286 | 0.5066 |
191
+ | 0.0056 | 408.0002 | 13900 | 7.7228 | 0.7281 | 0.5056 |
192
+ | 0.0139 | 411.0002 | 14000 | 5.8630 | 0.7269 | 0.5071 |
193
+ | 0.0437 | 414.0002 | 14100 | 5.3598 | 0.7321 | 0.5021 |
194
+ | 0.034 | 417.0002 | 14200 | 5.5026 | 0.7271 | 0.5024 |
195
+ | 0.0202 | 420.0001 | 14300 | 5.8865 | 0.7311 | 0.5140 |
196
+ | 0.0159 | 423.0001 | 14400 | 6.5222 | 0.7395 | 0.5110 |
197
+ | 0.0087 | 426.0001 | 14500 | 6.5400 | 0.7339 | 0.5123 |
198
+ | 0.0083 | 429.0001 | 14600 | 6.7563 | 0.7309 | 0.5126 |
199
+ | 0.0112 | 432.0001 | 14700 | 6.5140 | 0.7330 | 0.5117 |
200
+ | 0.0067 | 435.0001 | 14800 | 7.5600 | 0.7320 | 0.5090 |
201
+ | 0.0049 | 438.0001 | 14900 | 6.9364 | 0.7344 | 0.5106 |
202
+ | 0.0044 | 441.0000 | 15000 | 7.5370 | 0.7333 | 0.5077 |
203
+ | 0.0041 | 444.0000 | 15100 | 6.8297 | 0.7341 | 0.5101 |
204
+ | 0.004 | 447.0000 | 15200 | 6.6156 | 0.7333 | 0.5098 |
205
+ | 0.0034 | 449.0003 | 15300 | 6.5054 | 0.7329 | 0.5111 |
206
+ | 0.0034 | 452.0002 | 15400 | 7.3121 | 0.7333 | 0.5106 |
207
+ | 0.0031 | 455.0002 | 15500 | 6.7937 | 0.7337 | 0.5107 |
208
+ | 0.011 | 458.0002 | 15600 | 5.8695 | 0.7292 | 0.5100 |
209
+ | 0.0132 | 461.0002 | 15700 | 5.1512 | 0.7306 | 0.5058 |
210
+ | 0.0174 | 464.0002 | 15800 | 6.1831 | 0.7212 | 0.4888 |
211
+ | 0.0208 | 467.0002 | 15900 | 5.9847 | 0.7302 | 0.5086 |
212
+ | 0.0099 | 470.0001 | 16000 | 7.8549 | 0.7334 | 0.5147 |
213
+ | 0.0062 | 473.0001 | 16100 | 8.8292 | 0.7375 | 0.5135 |
214
+ | 0.0032 | 476.0001 | 16200 | 9.9944 | 0.7368 | 0.5127 |
215
+ | 0.0035 | 479.0001 | 16300 | 10.0666 | 0.7363 | 0.5119 |
216
+ | 0.0029 | 482.0001 | 16400 | 10.9885 | 0.7357 | 0.5145 |
217
+ | 0.0028 | 485.0001 | 16500 | 10.7700 | 0.7366 | 0.5143 |
218
+ | 0.0037 | 488.0001 | 16600 | 10.9022 | 0.7352 | 0.5148 |
219
+ | 0.003 | 491.0000 | 16700 | 10.1224 | 0.7331 | 0.5102 |
220
+ | 0.0024 | 494.0000 | 16800 | 10.4189 | 0.7340 | 0.5136 |
221
+ | 0.0023 | 497.0000 | 16900 | 8.8365 | 0.7347 | 0.5103 |
222
+ | 0.0089 | 499.0003 | 17000 | 6.3827 | 0.7342 | 0.5138 |
223
+ | 0.0028 | 502.0002 | 17100 | 7.0704 | 0.7341 | 0.5116 |
224
+ | 0.0026 | 505.0002 | 17200 | 7.6794 | 0.7330 | 0.5117 |
225
+ | 0.0404 | 508.0002 | 17300 | 5.4307 | 0.7211 | 0.4938 |
226
+ | 0.0259 | 511.0002 | 17400 | 4.9869 | 0.7302 | 0.5063 |
227
+ | 0.012 | 514.0002 | 17500 | 5.5884 | 0.7338 | 0.5147 |
228
+ | 0.0183 | 517.0002 | 17600 | 5.4601 | 0.7443 | 0.5155 |
229
+ | 0.0072 | 520.0001 | 17700 | 6.0993 | 0.7430 | 0.5153 |
230
+ | 0.0058 | 523.0001 | 17800 | 6.7000 | 0.7414 | 0.5167 |
231
+ | 0.0139 | 526.0001 | 17900 | 6.6830 | 0.7368 | 0.5145 |
232
+ | 0.0063 | 529.0001 | 18000 | 6.0754 | 0.7405 | 0.5110 |
233
+ | 0.0032 | 532.0001 | 18100 | 6.4956 | 0.7401 | 0.5135 |
234
+ | 0.0021 | 535.0001 | 18200 | 7.9266 | 0.7419 | 0.5163 |
235
+ | 0.0023 | 538.0001 | 18300 | 8.4981 | 0.7415 | 0.5166 |
236
+ | 0.0024 | 541.0000 | 18400 | 10.0118 | 0.7409 | 0.5157 |
237
+ | 0.0019 | 544.0000 | 18500 | 8.7743 | 0.7400 | 0.5153 |
238
+ | 0.0016 | 547.0000 | 18600 | 8.5584 | 0.7420 | 0.5164 |
239
+ | 0.0017 | 549.0003 | 18700 | 8.2237 | 0.7415 | 0.5165 |
240
+ | 0.0015 | 552.0002 | 18800 | 8.5134 | 0.7406 | 0.5157 |
241
+ | 0.0014 | 555.0002 | 18900 | 8.3007 | 0.7415 | 0.5149 |
242
+ | 0.0015 | 558.0002 | 19000 | 8.8583 | 0.7409 | 0.5162 |
243
+ | 0.0018 | 561.0002 | 19100 | 10.1450 | 0.7412 | 0.5164 |
244
+ | 0.0016 | 564.0002 | 19200 | 7.7257 | 0.7399 | 0.5148 |
245
+ | 0.0152 | 567.0002 | 19300 | 9.6283 | 0.7340 | 0.5139 |
246
+ | 0.0148 | 570.0001 | 19400 | 8.0854 | 0.7354 | 0.5115 |
247
+ | 0.0278 | 573.0001 | 19500 | 5.4622 | 0.7425 | 0.5128 |
248
+ | 0.0047 | 576.0001 | 19600 | 5.9493 | 0.7473 | 0.5148 |
249
+ | 0.0021 | 579.0001 | 19700 | 7.9085 | 0.7467 | 0.5187 |
250
+ | 0.0081 | 582.0001 | 19800 | 7.2669 | 0.7426 | 0.5159 |
251
+ | 0.006 | 585.0001 | 19900 | 10.3718 | 0.7420 | 0.5083 |
252
+ | 0.0023 | 588.0001 | 20000 | 9.9520 | 0.7424 | 0.5142 |
253
+ | 0.0018 | 591.0000 | 20100 | 8.6379 | 0.7444 | 0.5157 |
254
+ | 0.0019 | 594.0000 | 20200 | 8.2314 | 0.7444 | 0.5182 |
255
+ | 0.0013 | 597.0000 | 20300 | 8.5111 | 0.7450 | 0.5197 |
256
+ | 0.0041 | 599.0003 | 20400 | 8.7721 | 0.7433 | 0.5199 |
257
+ | 0.0034 | 602.0002 | 20500 | 7.6824 | 0.7441 | 0.5214 |
258
+ | 0.0148 | 605.0002 | 20600 | 9.0641 | 0.7415 | 0.5180 |
259
+ | 0.0038 | 608.0002 | 20700 | 9.7087 | 0.7417 | 0.5137 |
260
+ | 0.0023 | 611.0002 | 20800 | 9.7763 | 0.7437 | 0.5207 |
261
+ | 0.0014 | 614.0002 | 20900 | 12.2561 | 0.7447 | 0.5205 |
262
+ | 0.0013 | 617.0002 | 21000 | 11.4944 | 0.7452 | 0.5192 |
263
+ | 0.0015 | 620.0001 | 21100 | 11.6811 | 0.7442 | 0.5180 |
264
+ | 0.0015 | 623.0001 | 21200 | 15.8509 | 0.7442 | 0.5193 |
265
+ | 0.0011 | 626.0001 | 21300 | 12.2310 | 0.7437 | 0.5185 |
266
+ | 0.0017 | 629.0001 | 21400 | 13.4265 | 0.7435 | 0.5184 |
267
+ | 0.0316 | 632.0001 | 21500 | 8.7702 | 0.7199 | 0.4876 |
268
+ | 0.031 | 635.0001 | 21600 | 5.0570 | 0.7242 | 0.4973 |
269
+ | 0.0114 | 638.0001 | 21700 | 6.7841 | 0.7404 | 0.5105 |
270
+ | 0.0045 | 641.0000 | 21800 | 6.9076 | 0.7460 | 0.5173 |
271
+ | 0.0018 | 644.0000 | 21900 | 8.9279 | 0.7444 | 0.5150 |
272
+ | 0.0017 | 647.0000 | 22000 | 11.3365 | 0.7453 | 0.5204 |
273
+ | 0.0013 | 649.0003 | 22100 | 12.8086 | 0.7445 | 0.5200 |
274
+ | 0.0012 | 652.0002 | 22200 | 13.0414 | 0.7448 | 0.5204 |
275
+ | 0.0011 | 655.0002 | 22300 | 13.9307 | 0.7449 | 0.5191 |
276
+ | 0.001 | 658.0002 | 22400 | 10.0020 | 0.7452 | 0.5198 |
277
+ | 0.0009 | 661.0002 | 22500 | 9.9462 | 0.7444 | 0.5188 |
278
+
279
+
280
+ ### Framework versions
281
+
282
+ - Transformers 4.46.0
283
+ - Pytorch 2.3.1+cu121
284
+ - Datasets 2.20.0
285
+ - Tokenizers 0.20.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:234b1ad1839dae572239f43a962f739b45462eb31871cecdde556bbcf4d2e107
3
  size 124847568
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9b560f7f5b7649f29f163e9bd183531c21af55587ca6f95b386e0fd1f9191d
3
  size 124847568
runs/0-sample_rate=0.05/events.out.tfevents.1743346181.yara2.3923653.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:364fd3d982fd118be45eb2a4de626b11936683e4fd6f68627bb28453451fc7d3
3
- size 118676
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de13e2f18b07f5e61ad8b6724d37c040a2590d7d945e8e91774e4ad8ee065a25
3
+ size 185316
runs/0-sample_rate=0.05/events.out.tfevents.1743350463.yara2.3923653.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dbb58e3c559ad2f3eb1d12242e3efd0297e492696f8897aa32a4fc83831f262
3
+ size 470