--- tags: - merge - OpenPipe/mistral-ft-optimized-1227 - Nexusflow/Starling-LM-7B-beta base_model: - OpenPipe/mistral-ft-optimized-1227 - Nexusflow/Starling-LM-7B-beta license: apache-2.0 --- # M-LChat-7b M-LChat-7b is a merge of the following models using: * [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) ## License Apache 2.0 but you cannot use this Model to compete with OpenAI. ## Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1227 layer_range: [0, 32] - model: Nexusflow/Starling-LM-7B-beta layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1227 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Artples/M-LChat-7b" messages = [{GPT4 Correct User: What can i do if a lama is in my porch?<|end_of_turn|>GPT4 Correct Assistant:}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## How? Usage of [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) on a T4.