--- base_model: - TareksLab/MO-MODEL3-V0.2-LLaMa-70B - TareksLab/MO-MODEL5-V0.3-LLaMa-70B - TareksLab/MO-MODEL2-V0.2-LLaMa-70B - TareksLab/MO-MODEL1-V1-LLaMa-70B - TareksLab/MO-MODEL6-V0.1-LLaMa-70B - TareksLab/MO-MODEL4-V0.1-LLaMa-70B library_name: transformers tags: - mergekit - merge license: llama3.3 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64909c086073a0cd172d0411/F4995uJzGKmh0Xswtx2W9.png) Formerly known as MO-MODEL-Fused-V0.6-LLaMa-70B, This model is part of my ongoing experiments with merging specialized curated models. For this one, I started experimenting with gradients, to give myself more finetuned control of how the models influence the final merge. Recommended sampler settings: ``` Temp 1.0 Min P 0.02 ``` Because of the nature of this sort of 'Hyper Multi Model Merge', my recommendation is not to run this on anything lower than a Q5 quant. If you enjoy my work, please consider supporting me, It helps me make more models like this! [Support on KO-FI <3](https://ko-fi.com/tarek07) # MERGE2 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [TareksLab/MO-MODEL6-V0.1-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL6-V0.1-LLaMa-70B) as a base. ### Models Merged The following models were included in the merge: * [TareksLab/MO-MODEL3-V0.2-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL3-V0.2-LLaMa-70B) * [TareksLab/MO-MODEL5-V0.3-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL5-V0.3-LLaMa-70B) * [TareksLab/MO-MODEL2-V0.2-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL2-V0.2-LLaMa-70B) * [TareksLab/MO-MODEL1-V1-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL1-V1-LLaMa-70B) * [TareksLab/MO-MODEL4-V0.1-LLaMa-70B](https://huggingface.co/TareksLab/MO-MODEL4-V0.1-LLaMa-70B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: TareksLab/MO-MODEL6-V0.1-LLaMa-70B parameters: weight: [0.1, 0.1, 0.1, 0.2, 0.5] density: 0.5 - model: TareksLab/MO-MODEL4-V0.1-LLaMa-70B parameters: weight: [0.1, 0.1, 0.2, 0.4, 0.2] density: 0.5 - model: TareksLab/MO-MODEL5-V0.3-LLaMa-70B parameters: weight: [0.1, 0.2, 0.4, 0.2, 0.1] density: 0.5 - model: TareksLab/MO-MODEL3-V0.2-LLaMa-70B parameters: weight: [0.2, 0.4, 0.2, 0.1, 0.1] density: 0.5 - model: TareksLab/MO-MODEL2-V0.2-LLaMa-70B parameters: weight: [0.5, 0.2, 0.1, 0.1, 0.1] density: 0.5 - model: TareksLab/MO-MODEL1-V1-LLaMa-70B parameters: weight: 0.10 density: 0.5 merge_method: dare_ties base_model: TareksLab/MO-MODEL6-V0.1-LLaMa-70B parameters: normalize: false int8_mask: true dtype: float32 out_dtype: bfloat16 chat_template: llama3 tokenizer: source: base ```