--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503 tags: - generated_from_trainer datasets: - combined_dataset.jsonl model-index: - name: combined_model-finetune results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml # =================================================================== # CONFIG: For a single, combined "Conversion & Debug" Model # Using the stable 'alpaca' format. # =================================================================== # --- Core Model Configuration (Kept as requested) --- base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # --- Performance, Quality, and Memory Optimization --- flash_attention: true load_in_4bit: true load_in_8bit: false adapter: lora # --- Dataset Configuration (KEY CHANGE) --- # Reverted to the stable 'alpaca' type. # Axolotl will automatically look for 'instruction', 'input', 'output' fields. datasets: - path: combined_dataset.jsonl # This is your new, flattened dataset type: alpaca # --- Output Directory --- output_dir: ./combined_model-finetune # --- Training Hyperparameters --- sequence_len: 2048 micro_batch_size: 1 gradient_accumulation_steps: 4 num_epochs: 3 learning_rate: 3e-5 # --- LoRA Configuration --- lora_r: 16 lora_alpha: 32 lora_dropout: 0.15 lora_target_modules: - q_proj - v_proj - k_proj - o_proj # --- Logging, Evaluation, and Saving (Kept as requested) --- logging_steps: 2 evaluation_strategy: "steps" eval_steps: 2 save_strategy: "steps" save_steps: 9999 val_set_size: 0.05 special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# combined_model-finetune This model is a fine-tuned version of [mistralai/Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) on the combined_dataset.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.1924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 21 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.1481 | 1 | 0.2836 | | 0.2664 | 0.2963 | 2 | 0.2538 | | 0.4832 | 0.5926 | 4 | 0.2200 | | 0.3229 | 0.8889 | 6 | 0.2090 | | 0.1517 | 1.1481 | 8 | 0.2022 | | 0.3353 | 1.4444 | 10 | 0.2009 | | 0.2418 | 1.7407 | 12 | 0.1958 | | 0.0811 | 2.0 | 14 | 0.1942 | | 0.0496 | 2.2963 | 16 | 0.1933 | | 0.1906 | 2.5926 | 18 | 0.1927 | | 0.3171 | 2.8889 | 20 | 0.1924 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1