--- language: - fa license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation-common-voice-17-0 metrics: - wer model-index: - name: Whisper Small Persian - Persian ASR results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common-voice-17-0 type: mozilla-foundation-common-voice-17-0 config: default split: test[:20%] args: 'config: Persian, split: train[:20%]+validation[:20%]' metrics: - name: Wer type: wer value: 43.69646680942184 --- # Whisper Small Persian - Persian ASR This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common-voice-17-0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6543 - Wer: 43.6965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3355 | 1.0 | 1973 | 0.5819 | 50.9101 | | 0.176 | 2.0 | 3946 | 0.5479 | 49.8796 | | 0.0767 | 3.0 | 5919 | 0.5610 | 45.3292 | | 0.0262 | 4.0 | 7892 | 0.6115 | 44.0645 | | 0.0116 | 5.0 | 9865 | 0.6543 | 43.6965 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1