--- library_name: transformers license: bsd-3-clause base_model: Salesforce/blip-vqa-base tags: - generated_from_trainer model-index: - name: blip2-finetuned-ai2d results: [] --- # blip2-finetuned-ai2d This model is a fine-tuned version of [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.3867 | 1.4380 | 50 | 0.3808 | | 0.3498 | 2.8759 | 100 | 0.3536 | | 0.3525 | 4.2920 | 150 | 0.3529 | | 0.3497 | 5.7299 | 200 | 0.3553 | | 0.321 | 7.1460 | 250 | 0.3500 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0