Aswith77 commited on
Commit
58c4052
·
verified ·
1 Parent(s): 5935091
Files changed (1) hide show
  1. README.md +133 -130
README.md CHANGED
@@ -3,199 +3,202 @@ library_name: transformers
3
  tags:
4
  - trl
5
  - sft
 
 
 
 
 
 
 
 
 
 
6
  ---
7
 
8
- # Model Card for Model ID
9
-
10
- <!-- Provide a quick summary of what the model is/does. -->
11
-
12
 
 
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
- <!-- Provide a longer summary of what this model is. -->
19
-
20
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
21
-
22
- - **Developed by:** [More Information Needed]
23
- - **Funded by [optional]:** [More Information Needed]
24
- - **Shared by [optional]:** [More Information Needed]
25
- - **Model type:** [More Information Needed]
26
- - **Language(s) (NLP):** [More Information Needed]
27
- - **License:** [More Information Needed]
28
- - **Finetuned from model [optional]:** [More Information Needed]
29
 
30
- ### Model Sources [optional]
 
 
 
 
 
31
 
32
- <!-- Provide the basic links for the model. -->
33
 
34
- - **Repository:** [More Information Needed]
35
- - **Paper [optional]:** [More Information Needed]
36
- - **Demo [optional]:** [More Information Needed]
37
 
38
  ## Uses
39
 
40
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
41
-
42
  ### Direct Use
43
 
44
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
45
-
46
- [More Information Needed]
47
 
48
- ### Downstream Use [optional]
 
 
49
 
50
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
51
 
52
- [More Information Needed]
 
 
 
53
 
54
  ### Out-of-Scope Use
55
 
56
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
-
58
- [More Information Needed]
59
-
60
- ## Bias, Risks, and Limitations
61
-
62
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
63
-
64
- [More Information Needed]
65
-
66
- ### Recommendations
67
-
68
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
69
-
70
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
71
 
72
  ## How to Get Started with the Model
73
 
74
- Use the code below to get started with the model.
75
-
76
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ## Training Details
79
 
80
  ### Training Data
81
 
82
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
83
-
84
- [More Information Needed]
85
 
86
  ### Training Procedure
87
 
88
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
89
-
90
- #### Preprocessing [optional]
91
-
92
- [More Information Needed]
93
-
94
-
95
  #### Training Hyperparameters
96
 
97
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
98
-
99
- #### Speeds, Sizes, Times [optional]
100
-
101
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
102
-
103
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
104
 
105
  ## Evaluation
106
 
107
- <!-- This section describes the evaluation protocols and provides the results. -->
108
-
109
- ### Testing Data, Factors & Metrics
110
 
111
- #### Testing Data
112
 
113
- <!-- This should link to a Dataset Card if possible. -->
114
-
115
- [More Information Needed]
116
-
117
- #### Factors
118
-
119
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Metrics
124
-
125
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
126
-
127
- [More Information Needed]
128
-
129
- ### Results
130
-
131
- [More Information Needed]
132
-
133
- #### Summary
134
 
 
135
 
 
136
 
137
- ## Model Examination [optional]
 
 
 
138
 
139
- <!-- Relevant interpretability work for the model goes here -->
140
 
141
- [More Information Needed]
 
 
 
142
 
143
  ## Environmental Impact
144
 
145
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
146
-
147
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
148
 
149
- - **Hardware Type:** [More Information Needed]
150
- - **Hours used:** [More Information Needed]
151
- - **Cloud Provider:** [More Information Needed]
152
- - **Compute Region:** [More Information Needed]
153
- - **Carbon Emitted:** [More Information Needed]
154
 
155
- ## Technical Specifications [optional]
156
 
157
  ### Model Architecture and Objective
158
 
159
- [More Information Needed]
 
 
 
160
 
161
  ### Compute Infrastructure
162
 
163
- [More Information Needed]
164
-
165
  #### Hardware
166
 
167
- [More Information Needed]
 
168
 
169
  #### Software
170
 
171
- [More Information Needed]
172
-
173
- ## Citation [optional]
174
-
175
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
176
-
177
- **BibTeX:**
178
-
179
- [More Information Needed]
180
-
181
- **APA:**
182
-
183
- [More Information Needed]
184
-
185
- ## Glossary [optional]
186
-
187
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
188
-
189
- [More Information Needed]
190
-
191
- ## More Information [optional]
192
-
193
- [More Information Needed]
194
 
195
- ## Model Card Authors [optional]
196
 
197
- [More Information Needed]
198
 
199
  ## Model Card Contact
200
 
201
- [More Information Needed]
 
3
  tags:
4
  - trl
5
  - sft
6
+ - code
7
+ - competitive-programming
8
+ - codeforces
9
+ - lora
10
+ license: mit
11
+ datasets:
12
+ - open-r1/codeforces-cots
13
+ base_model:
14
+ - google/gemma-2-2b-it
15
+ pipeline_tag: text-generation
16
  ---
17
 
18
+ # Gemma-2-2b Fine-tuned for Competitive Programming
 
 
 
19
 
20
+ This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the [open-r1/codeforces-cots](https://huggingface.co/datasets/open-r1/codeforces-cots) dataset for competitive programming problem solving.
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
+ This model has been fine-tuned using LoRA (Low-Rank Adaptation) on competitive programming problems from Codeforces. It's designed to help generate solutions for algorithmic and data structure problems commonly found in competitive programming contests.
 
 
 
 
 
 
 
 
 
 
27
 
28
+ - **Developed by:** Aswith77
29
+ - **Model type:** Causal Language Model (Code Generation)
30
+ - **Language(s):** Python, C++, Java (primarily Python)
31
+ - **License:** MIT
32
+ - **Finetuned from model:** google/gemma-2-2b-it
33
+ - **Fine-tuning method:** LoRA (Low-Rank Adaptation)
34
 
35
+ ### Model Sources
36
 
37
+ - **Repository:** [Hugging Face Model](https://huggingface.co/Aswith77/gemma-2-2b-it-finetune-codeforces-cots)
38
+ - **Base Model:** [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it)
39
+ - **Dataset:** [open-r1/codeforces-cots](https://huggingface.co/datasets/open-r1/codeforces-cots)
40
 
41
  ## Uses
42
 
 
 
43
  ### Direct Use
44
 
45
+ This model is intended for generating solutions to competitive programming problems, particularly those similar to Codeforces problems. It can:
 
 
46
 
47
+ - Generate algorithmic solutions for given problem statements
48
+ - Help with code completion for competitive programming
49
+ - Assist in learning algorithmic problem-solving patterns
50
 
51
+ ### Downstream Use
52
 
53
+ The model can be further fine-tuned on:
54
+ - Specific programming languages
55
+ - Domain-specific algorithmic problems
56
+ - Educational coding platforms
57
 
58
  ### Out-of-Scope Use
59
 
60
+ This model should not be used for:
61
+ - Production code without thorough testing
62
+ - Security-critical applications
63
+ - General-purpose software development without validation
64
+ - Problems requiring real-world system design
 
 
 
 
 
 
 
 
 
 
65
 
66
  ## How to Get Started with the Model
67
 
68
+ ```python
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
+ from peft import PeftModel
71
+ import torch
72
+
73
+ # Load the base model
74
+ base_model = AutoModelForCausalLM.from_pretrained(
75
+ "google/gemma-2-2b-it",
76
+ torch_dtype=torch.float16,
77
+ device_map="auto"
78
+ )
79
+
80
+ # Load the fine-tuned LoRA adapters
81
+ model = PeftModel.from_pretrained(
82
+ base_model,
83
+ "Aswith77/gemma-2-2b-it-finetune-codeforces-cots"
84
+ )
85
+
86
+ # Load tokenizer
87
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
88
+
89
+ # Generate code for a problem
90
+ problem = """
91
+ Given an array of integers, find the maximum sum of a contiguous subarray.
92
+ Input: [-2,1,-3,4,-1,2,1,-5,4]
93
+ Output: 6 (subarray [4,-1,2,1])
94
+ """
95
+
96
+ inputs = tokenizer(problem, return_tensors="pt")
97
+ outputs = model.generate(
98
+ **inputs,
99
+ max_length=512,
100
+ temperature=0.7,
101
+ do_sample=True,
102
+ pad_token_id=tokenizer.eos_token_id
103
+ )
104
+
105
+ solution = tokenizer.decode(outputs[0], skip_special_tokens=True)
106
+ print(solution)
107
+ ```
108
 
109
  ## Training Details
110
 
111
  ### Training Data
112
 
113
+ The model was trained on the [open-r1/codeforces-cots](https://huggingface.co/datasets/open-r1/codeforces-cots) dataset, specifically using 1,000 competitive programming problems and their solutions from Codeforces.
 
 
114
 
115
  ### Training Procedure
116
 
 
 
 
 
 
 
 
117
  #### Training Hyperparameters
118
 
119
+ - **Training regime:** fp16 mixed precision
120
+ - **Learning rate:** 2e-4
121
+ - **Batch size:** 1 (per device)
122
+ - **Gradient accumulation steps:** 2
123
+ - **Max steps:** 100
124
+ - **Warmup steps:** 5
125
+ - **Optimizer:** AdamW 8-bit
126
+ - **Weight decay:** 0.01
127
+ - **LoRA rank (r):** 16
128
+ - **LoRA alpha:** 32
129
+ - **LoRA dropout:** 0.1
130
+ - **Target modules:** q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
131
+
132
+ #### Speeds, Sizes, Times
133
+
134
+ - **Training time:** ~20 minutes
135
+ - **Hardware:** Tesla T4 GPU (16GB)
136
+ - **Model size:** ~30MB (LoRA adapters only)
137
+ - **Final training loss:** 0.3715
138
+ - **Training samples per second:** 0.338
139
 
140
  ## Evaluation
141
 
142
+ The model achieved a training loss of 0.3715, showing good convergence from an initial loss of 0.9303. The loss curve demonstrated steady improvement throughout training without signs of overfitting.
 
 
143
 
144
+ ### Training Loss Progression
145
 
146
+ - Initial loss: 0.9303
147
+ - Final loss: 0.3715
148
+ - Loss reduction: ~60%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
+ ## Bias, Risks, and Limitations
151
 
152
+ ### Limitations
153
 
154
+ - **Dataset bias:** Trained primarily on Codeforces problems, may not generalize well to other competitive programming platforms
155
+ - **Language bias:** Solutions may favor certain programming patterns common in the training data
156
+ - **Size limitations:** Being a 2B parameter model, it may struggle with very complex algorithmic problems
157
+ - **Code correctness:** Generated code should always be tested and validated before use
158
 
159
+ ### Recommendations
160
 
161
+ - Always test generated solutions with multiple test cases
162
+ - Use the model as a starting point, not a final solution
163
+ - Verify algorithmic correctness and time complexity
164
+ - Consider the model's suggestions as one approach among many possible solutions
165
 
166
  ## Environmental Impact
167
 
168
+ Training was conducted on a single Tesla T4 GPU for approximately 20 minutes, resulting in minimal environmental impact compared to larger scale training runs.
 
 
169
 
170
+ - **Hardware Type:** Tesla T4 GPU
171
+ - **Hours used:** 0.33 hours
172
+ - **Cloud Provider:** Kaggle
173
+ - **Compute Region:** Not specified
174
+ - **Carbon Emitted:** Minimal (estimated < 0.1 kg CO2eq)
175
 
176
+ ## Technical Specifications
177
 
178
  ### Model Architecture and Objective
179
 
180
+ - **Base Architecture:** Gemma-2 (2B parameters)
181
+ - **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
182
+ - **Objective:** Causal language modeling with supervised fine-tuning
183
+ - **Quantization:** 4-bit quantization during training
184
 
185
  ### Compute Infrastructure
186
 
 
 
187
  #### Hardware
188
 
189
+ - **GPU:** Tesla T4 (16GB VRAM)
190
+ - **Platform:** Kaggle Notebooks
191
 
192
  #### Software
193
 
194
+ - **Framework:** PyTorch, Transformers, PEFT, TRL
195
+ - **Quantization:** bitsandbytes 4-bit
196
+ - **Training:** Supervised Fine-Tuning (SFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
+ ## Model Card Authors
199
 
200
+ Created by Aswith77 during fine-tuning experiments with competitive programming datasets.
201
 
202
  ## Model Card Contact
203
 
204
+ For questions or issues regarding this model, please open an issue in the model repository.