--- base_model: MBZUAI/swiftformer-xs tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swiftformer-xs-RH results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8598130841121495 --- # swiftformer-xs-RH This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co/MBZUAI/swiftformer-xs) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4150 - Accuracy: 0.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 8 | 0.6926 | 0.6262 | | 0.693 | 2.0 | 16 | 0.6873 | 0.6822 | | 0.6899 | 3.0 | 24 | 0.6694 | 0.6729 | | 0.6732 | 4.0 | 32 | 0.6146 | 0.7290 | | 0.6256 | 5.0 | 40 | 0.7084 | 0.4953 | | 0.6256 | 6.0 | 48 | 0.6591 | 0.6355 | | 0.5796 | 7.0 | 56 | 0.5670 | 0.7383 | | 0.5253 | 8.0 | 64 | 0.5351 | 0.7196 | | 0.4713 | 9.0 | 72 | 0.4614 | 0.8411 | | 0.441 | 10.0 | 80 | 0.5826 | 0.7570 | | 0.441 | 11.0 | 88 | 0.4679 | 0.7850 | | 0.3803 | 12.0 | 96 | 0.4517 | 0.8411 | | 0.3513 | 13.0 | 104 | 0.4571 | 0.7757 | | 0.3043 | 14.0 | 112 | 0.4755 | 0.8037 | | 0.3172 | 15.0 | 120 | 0.5953 | 0.7944 | | 0.3172 | 16.0 | 128 | 0.5904 | 0.7383 | | 0.365 | 17.0 | 136 | 0.4213 | 0.8411 | | 0.279 | 18.0 | 144 | 0.4572 | 0.8037 | | 0.3092 | 19.0 | 152 | 0.4181 | 0.8131 | | 0.2667 | 20.0 | 160 | 0.4117 | 0.8224 | | 0.2667 | 21.0 | 168 | 0.4349 | 0.8037 | | 0.261 | 22.0 | 176 | 0.4185 | 0.8037 | | 0.2638 | 23.0 | 184 | 0.3989 | 0.8131 | | 0.2269 | 24.0 | 192 | 0.3971 | 0.8318 | | 0.2431 | 25.0 | 200 | 0.4784 | 0.8037 | | 0.2431 | 26.0 | 208 | 0.3763 | 0.8318 | | 0.2111 | 27.0 | 216 | 0.4088 | 0.8411 | | 0.2087 | 28.0 | 224 | 0.4024 | 0.8318 | | 0.1645 | 29.0 | 232 | 0.4161 | 0.8318 | | 0.2137 | 30.0 | 240 | 0.4128 | 0.8131 | | 0.2137 | 31.0 | 248 | 0.4004 | 0.8411 | | 0.2207 | 32.0 | 256 | 0.4206 | 0.8224 | | 0.1544 | 33.0 | 264 | 0.3622 | 0.8505 | | 0.197 | 34.0 | 272 | 0.4356 | 0.8411 | | 0.2168 | 35.0 | 280 | 0.4067 | 0.8318 | | 0.2168 | 36.0 | 288 | 0.3809 | 0.8224 | | 0.1631 | 37.0 | 296 | 0.3865 | 0.8411 | | 0.1913 | 38.0 | 304 | 0.4008 | 0.8318 | | 0.1595 | 39.0 | 312 | 0.3752 | 0.8318 | | 0.1694 | 40.0 | 320 | 0.4150 | 0.8598 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0