|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformer import TransformerBlock
|
|
|
|
class MiniGPT(nn.Module):
|
|
def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers, max_seq_len):
|
|
super().__init__()
|
|
self.max_seq_len = max_seq_len
|
|
self.token_embedding = nn.Embedding(vocab_size, embed_dim)
|
|
self.pos_embedding = nn.Embedding(max_seq_len, embed_dim)
|
|
self.blocks = nn.Sequential(
|
|
*[TransformerBlock(embed_dim, num_heads, ff_dim) for _ in range(num_layers)]
|
|
)
|
|
self.ln_f = nn.LayerNorm(embed_dim)
|
|
self.head = nn.Linear(embed_dim, vocab_size, bias=False)
|
|
|
|
self.head.weight = self.token_embedding.weight
|
|
|
|
def forward(self, idx, mask=None):
|
|
B, T = idx.shape
|
|
tok_emb = self.token_embedding(idx)
|
|
pos = torch.arange(T,device=idx.device).unsqueeze(0)
|
|
pos_emb = self.pos_embedding(pos)
|
|
x = tok_emb + pos_emb
|
|
x = self.blocks(x, mask=mask) if mask is not None else self.blocks(x)
|
|
x = self.ln_f(x)
|
|
logits = self.head(x)
|
|
return logits
|
|
|