Avanthika commited on
Commit
b324f1a
·
1 Parent(s): 6da7f75

Upload 5 files

Browse files
Files changed (6) hide show
  1. .gitattributes +2 -0
  2. eng2kamodel3.pth +3 -0
  3. english.txt +3 -0
  4. kannada.txt +3 -0
  5. transformer.py +304 -0
  6. transformer3layer.ipynb +0 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ english.txt filter=lfs diff=lfs merge=lfs -text
37
+ kannada.txt filter=lfs diff=lfs merge=lfs -text
eng2kamodel3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0f39db4472a89f4fb094fe23e5b859e93b5e79b2c4431dc5489af940f45205
3
+ size 88973879
english.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42701f371293e93722cbc7127aa54627ff89dbde5675c0e65248db6fcd192f3e
3
+ size 16509668
kannada.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c1721cbe69ff0c111e18cc4c10ea0d0b60a36480153c5451865d1571df9446
3
+ size 45876527
transformer.py ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import math
4
+ from torch import nn
5
+ import torch.nn.functional as F
6
+
7
+ def get_device():
8
+ return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
9
+
10
+ def scaled_dot_product(q, k, v, mask=None):
11
+ d_k = q.size()[-1]
12
+ scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
13
+ if mask is not None:
14
+ scaled = scaled.permute(1, 0, 2, 3) + mask
15
+ scaled = scaled.permute(1, 0, 2, 3)
16
+ attention = F.softmax(scaled, dim=-1)
17
+ values = torch.matmul(attention, v)
18
+ return values, attention
19
+
20
+ class PositionalEncoding(nn.Module):
21
+ def __init__(self, d_model, max_sequence_length):
22
+ super().__init__()
23
+ self.max_sequence_length = max_sequence_length
24
+ self.d_model = d_model
25
+
26
+ def forward(self):
27
+ even_i = torch.arange(0, self.d_model, 2).float()
28
+ denominator = torch.pow(10000, even_i/self.d_model)
29
+ position = (torch.arange(self.max_sequence_length)
30
+ .reshape(self.max_sequence_length, 1))
31
+ even_PE = torch.sin(position / denominator)
32
+ odd_PE = torch.cos(position / denominator)
33
+ stacked = torch.stack([even_PE, odd_PE], dim=2)
34
+ PE = torch.flatten(stacked, start_dim=1, end_dim=2)
35
+ return PE
36
+
37
+ class SentenceEmbedding(nn.Module):
38
+ "For a given sentence, create an embedding"
39
+ def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
40
+ super().__init__()
41
+ self.vocab_size = len(language_to_index)
42
+ self.max_sequence_length = max_sequence_length
43
+ self.embedding = nn.Embedding(self.vocab_size, d_model)
44
+ self.language_to_index = language_to_index
45
+ self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
46
+ self.dropout = nn.Dropout(p=0.1)
47
+ self.START_TOKEN = START_TOKEN
48
+ self.END_TOKEN = END_TOKEN
49
+ self.PADDING_TOKEN = PADDING_TOKEN
50
+
51
+ def batch_tokenize(self, batch, start_token, end_token):
52
+
53
+ def tokenize(sentence, start_token, end_token):
54
+ sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
55
+ if start_token:
56
+ sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
57
+ if end_token:
58
+ sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
59
+ for _ in range(len(sentence_word_indicies), self.max_sequence_length):
60
+ sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
61
+ return torch.tensor(sentence_word_indicies)
62
+
63
+ tokenized = []
64
+ for sentence_num in range(len(batch)):
65
+ tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
66
+ tokenized = torch.stack(tokenized)
67
+ return tokenized.to(get_device())
68
+
69
+ def forward(self, x, start_token, end_token): # sentence
70
+ x = self.batch_tokenize(x, start_token, end_token)
71
+ x = self.embedding(x)
72
+ pos = self.position_encoder().to(get_device())
73
+ x = self.dropout(x + pos)
74
+ return x
75
+
76
+
77
+ class MultiHeadAttention(nn.Module):
78
+ def __init__(self, d_model, num_heads):
79
+ super().__init__()
80
+ self.d_model = d_model
81
+ self.num_heads = num_heads
82
+ self.head_dim = d_model // num_heads
83
+ self.qkv_layer = nn.Linear(d_model , 3 * d_model)
84
+ self.linear_layer = nn.Linear(d_model, d_model)
85
+
86
+ def forward(self, x, mask):
87
+ batch_size, sequence_length, d_model = x.size()
88
+ qkv = self.qkv_layer(x)
89
+ qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim)
90
+ qkv = qkv.permute(0, 2, 1, 3)
91
+ q, k, v = qkv.chunk(3, dim=-1)
92
+ values, attention = scaled_dot_product(q, k, v, mask)
93
+ values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim)
94
+ out = self.linear_layer(values)
95
+ return out
96
+
97
+
98
+ class LayerNormalization(nn.Module):
99
+ def __init__(self, parameters_shape, eps=1e-5):
100
+ super().__init__()
101
+ self.parameters_shape=parameters_shape
102
+ self.eps=eps
103
+ self.gamma = nn.Parameter(torch.ones(parameters_shape))
104
+ self.beta = nn.Parameter(torch.zeros(parameters_shape))
105
+
106
+ def forward(self, inputs):
107
+ dims = [-(i + 1) for i in range(len(self.parameters_shape))]
108
+ mean = inputs.mean(dim=dims, keepdim=True)
109
+ var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
110
+ std = (var + self.eps).sqrt()
111
+ y = (inputs - mean) / std
112
+ out = self.gamma * y + self.beta
113
+ return out
114
+
115
+
116
+ class PositionwiseFeedForward(nn.Module):
117
+ def __init__(self, d_model, hidden, drop_prob=0.1):
118
+ super(PositionwiseFeedForward, self).__init__()
119
+ self.linear1 = nn.Linear(d_model, hidden)
120
+ self.linear2 = nn.Linear(hidden, d_model)
121
+ self.relu = nn.ReLU()
122
+ self.dropout = nn.Dropout(p=drop_prob)
123
+
124
+ def forward(self, x):
125
+ x = self.linear1(x)
126
+ x = self.relu(x)
127
+ x = self.dropout(x)
128
+ x = self.linear2(x)
129
+ return x
130
+
131
+
132
+ class EncoderLayer(nn.Module):
133
+ def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
134
+ super(EncoderLayer, self).__init__()
135
+ self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
136
+ self.norm1 = LayerNormalization(parameters_shape=[d_model])
137
+ self.dropout1 = nn.Dropout(p=drop_prob)
138
+ self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
139
+ self.norm2 = LayerNormalization(parameters_shape=[d_model])
140
+ self.dropout2 = nn.Dropout(p=drop_prob)
141
+
142
+ def forward(self, x, self_attention_mask):
143
+ residual_x = x.clone()
144
+ x = self.attention(x, mask=self_attention_mask)
145
+ x = self.dropout1(x)
146
+ x = self.norm1(x + residual_x)
147
+ residual_x = x.clone()
148
+ x = self.ffn(x)
149
+ x = self.dropout2(x)
150
+ x = self.norm2(x + residual_x)
151
+ return x
152
+
153
+ class SequentialEncoder(nn.Sequential):
154
+ def forward(self, *inputs):
155
+ x, self_attention_mask = inputs
156
+ for module in self._modules.values():
157
+ x = module(x, self_attention_mask)
158
+ return x
159
+
160
+ class Encoder(nn.Module):
161
+ def __init__(self,
162
+ d_model,
163
+ ffn_hidden,
164
+ num_heads,
165
+ drop_prob,
166
+ num_layers,
167
+ max_sequence_length,
168
+ language_to_index,
169
+ START_TOKEN,
170
+ END_TOKEN,
171
+ PADDING_TOKEN):
172
+ super().__init__()
173
+ self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
174
+ self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
175
+ for _ in range(num_layers)])
176
+
177
+ def forward(self, x, self_attention_mask, start_token, end_token):
178
+ x = self.sentence_embedding(x, start_token, end_token)
179
+ x = self.layers(x, self_attention_mask)
180
+ return x
181
+
182
+
183
+ class MultiHeadCrossAttention(nn.Module):
184
+ def __init__(self, d_model, num_heads):
185
+ super().__init__()
186
+ self.d_model = d_model
187
+ self.num_heads = num_heads
188
+ self.head_dim = d_model // num_heads
189
+ self.kv_layer = nn.Linear(d_model , 2 * d_model)
190
+ self.q_layer = nn.Linear(d_model , d_model)
191
+ self.linear_layer = nn.Linear(d_model, d_model)
192
+
193
+ def forward(self, x, y, mask):
194
+ batch_size, sequence_length, d_model = x.size() # in practice, this is the same for both languages...so we can technically combine with normal attention
195
+ kv = self.kv_layer(x)
196
+ q = self.q_layer(y)
197
+ kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim)
198
+ q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim)
199
+ kv = kv.permute(0, 2, 1, 3)
200
+ q = q.permute(0, 2, 1, 3)
201
+ k, v = kv.chunk(2, dim=-1)
202
+ values, attention = scaled_dot_product(q, k, v, mask) # We don't need the mask for cross attention, removing in outer function!
203
+ values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, d_model)
204
+ out = self.linear_layer(values)
205
+ return out
206
+
207
+
208
+ class DecoderLayer(nn.Module):
209
+ def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
210
+ super(DecoderLayer, self).__init__()
211
+ self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
212
+ self.layer_norm1 = LayerNormalization(parameters_shape=[d_model])
213
+ self.dropout1 = nn.Dropout(p=drop_prob)
214
+
215
+ self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
216
+ self.layer_norm2 = LayerNormalization(parameters_shape=[d_model])
217
+ self.dropout2 = nn.Dropout(p=drop_prob)
218
+
219
+ self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
220
+ self.layer_norm3 = LayerNormalization(parameters_shape=[d_model])
221
+ self.dropout3 = nn.Dropout(p=drop_prob)
222
+
223
+ def forward(self, x, y, self_attention_mask, cross_attention_mask):
224
+ _y = y.clone()
225
+ y = self.self_attention(y, mask=self_attention_mask)
226
+ y = self.dropout1(y)
227
+ y = self.layer_norm1(y + _y)
228
+
229
+ _y = y.clone()
230
+ y = self.encoder_decoder_attention(x, y, mask=cross_attention_mask)
231
+ y = self.dropout2(y)
232
+ y = self.layer_norm2(y + _y)
233
+
234
+ _y = y.clone()
235
+ y = self.ffn(y)
236
+ y = self.dropout3(y)
237
+ y = self.layer_norm3(y + _y)
238
+ return y
239
+
240
+
241
+ class SequentialDecoder(nn.Sequential):
242
+ def forward(self, *inputs):
243
+ x, y, self_attention_mask, cross_attention_mask = inputs
244
+ for module in self._modules.values():
245
+ y = module(x, y, self_attention_mask, cross_attention_mask)
246
+ return y
247
+
248
+ class Decoder(nn.Module):
249
+ def __init__(self,
250
+ d_model,
251
+ ffn_hidden,
252
+ num_heads,
253
+ drop_prob,
254
+ num_layers,
255
+ max_sequence_length,
256
+ language_to_index,
257
+ START_TOKEN,
258
+ END_TOKEN,
259
+ PADDING_TOKEN):
260
+ super().__init__()
261
+ self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
262
+ self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(num_layers)])
263
+
264
+ def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token):
265
+ y = self.sentence_embedding(y, start_token, end_token)
266
+ y = self.layers(x, y, self_attention_mask, cross_attention_mask)
267
+ return y
268
+
269
+
270
+ class Transformer(nn.Module):
271
+ def __init__(self,
272
+ d_model,
273
+ ffn_hidden,
274
+ num_heads,
275
+ drop_prob,
276
+ num_layers,
277
+ max_sequence_length,
278
+ kn_vocab_size,
279
+ english_to_index,
280
+ hindi_to_index,
281
+ START_TOKEN,
282
+ END_TOKEN,
283
+ PADDING_TOKEN
284
+ ):
285
+ super().__init__()
286
+ self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
287
+ self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, hindi_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
288
+ self.linear = nn.Linear(d_model, kn_vocab_size)
289
+ self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
290
+
291
+ def forward(self,
292
+ x,
293
+ y,
294
+ encoder_self_attention_mask=None,
295
+ decoder_self_attention_mask=None,
296
+ decoder_cross_attention_mask=None,
297
+ enc_start_token=False,
298
+ enc_end_token=False,
299
+ dec_start_token=False, # We should make this true
300
+ dec_end_token=False): # x, y are batch of sentences
301
+ x = self.encoder(x, encoder_self_attention_mask, start_token=enc_start_token, end_token=enc_end_token)
302
+ out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token)
303
+ out = self.linear(out)
304
+ return out
transformer3layer.ipynb ADDED
The diff for this file is too large to render. See raw diff