Upload 5 files
Browse files- .gitattributes +2 -0
- eng2kamodel3.pth +3 -0
- english.txt +3 -0
- kannada.txt +3 -0
- transformer.py +304 -0
- transformer3layer.ipynb +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
english.txt filter=lfs diff=lfs merge=lfs -text
|
37 |
+
kannada.txt filter=lfs diff=lfs merge=lfs -text
|
eng2kamodel3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba0f39db4472a89f4fb094fe23e5b859e93b5e79b2c4431dc5489af940f45205
|
3 |
+
size 88973879
|
english.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42701f371293e93722cbc7127aa54627ff89dbde5675c0e65248db6fcd192f3e
|
3 |
+
size 16509668
|
kannada.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c1721cbe69ff0c111e18cc4c10ea0d0b60a36480153c5451865d1571df9446
|
3 |
+
size 45876527
|
transformer.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import math
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
def get_device():
|
8 |
+
return torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
9 |
+
|
10 |
+
def scaled_dot_product(q, k, v, mask=None):
|
11 |
+
d_k = q.size()[-1]
|
12 |
+
scaled = torch.matmul(q, k.transpose(-1, -2)) / math.sqrt(d_k)
|
13 |
+
if mask is not None:
|
14 |
+
scaled = scaled.permute(1, 0, 2, 3) + mask
|
15 |
+
scaled = scaled.permute(1, 0, 2, 3)
|
16 |
+
attention = F.softmax(scaled, dim=-1)
|
17 |
+
values = torch.matmul(attention, v)
|
18 |
+
return values, attention
|
19 |
+
|
20 |
+
class PositionalEncoding(nn.Module):
|
21 |
+
def __init__(self, d_model, max_sequence_length):
|
22 |
+
super().__init__()
|
23 |
+
self.max_sequence_length = max_sequence_length
|
24 |
+
self.d_model = d_model
|
25 |
+
|
26 |
+
def forward(self):
|
27 |
+
even_i = torch.arange(0, self.d_model, 2).float()
|
28 |
+
denominator = torch.pow(10000, even_i/self.d_model)
|
29 |
+
position = (torch.arange(self.max_sequence_length)
|
30 |
+
.reshape(self.max_sequence_length, 1))
|
31 |
+
even_PE = torch.sin(position / denominator)
|
32 |
+
odd_PE = torch.cos(position / denominator)
|
33 |
+
stacked = torch.stack([even_PE, odd_PE], dim=2)
|
34 |
+
PE = torch.flatten(stacked, start_dim=1, end_dim=2)
|
35 |
+
return PE
|
36 |
+
|
37 |
+
class SentenceEmbedding(nn.Module):
|
38 |
+
"For a given sentence, create an embedding"
|
39 |
+
def __init__(self, max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN):
|
40 |
+
super().__init__()
|
41 |
+
self.vocab_size = len(language_to_index)
|
42 |
+
self.max_sequence_length = max_sequence_length
|
43 |
+
self.embedding = nn.Embedding(self.vocab_size, d_model)
|
44 |
+
self.language_to_index = language_to_index
|
45 |
+
self.position_encoder = PositionalEncoding(d_model, max_sequence_length)
|
46 |
+
self.dropout = nn.Dropout(p=0.1)
|
47 |
+
self.START_TOKEN = START_TOKEN
|
48 |
+
self.END_TOKEN = END_TOKEN
|
49 |
+
self.PADDING_TOKEN = PADDING_TOKEN
|
50 |
+
|
51 |
+
def batch_tokenize(self, batch, start_token, end_token):
|
52 |
+
|
53 |
+
def tokenize(sentence, start_token, end_token):
|
54 |
+
sentence_word_indicies = [self.language_to_index[token] for token in list(sentence)]
|
55 |
+
if start_token:
|
56 |
+
sentence_word_indicies.insert(0, self.language_to_index[self.START_TOKEN])
|
57 |
+
if end_token:
|
58 |
+
sentence_word_indicies.append(self.language_to_index[self.END_TOKEN])
|
59 |
+
for _ in range(len(sentence_word_indicies), self.max_sequence_length):
|
60 |
+
sentence_word_indicies.append(self.language_to_index[self.PADDING_TOKEN])
|
61 |
+
return torch.tensor(sentence_word_indicies)
|
62 |
+
|
63 |
+
tokenized = []
|
64 |
+
for sentence_num in range(len(batch)):
|
65 |
+
tokenized.append( tokenize(batch[sentence_num], start_token, end_token) )
|
66 |
+
tokenized = torch.stack(tokenized)
|
67 |
+
return tokenized.to(get_device())
|
68 |
+
|
69 |
+
def forward(self, x, start_token, end_token): # sentence
|
70 |
+
x = self.batch_tokenize(x, start_token, end_token)
|
71 |
+
x = self.embedding(x)
|
72 |
+
pos = self.position_encoder().to(get_device())
|
73 |
+
x = self.dropout(x + pos)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class MultiHeadAttention(nn.Module):
|
78 |
+
def __init__(self, d_model, num_heads):
|
79 |
+
super().__init__()
|
80 |
+
self.d_model = d_model
|
81 |
+
self.num_heads = num_heads
|
82 |
+
self.head_dim = d_model // num_heads
|
83 |
+
self.qkv_layer = nn.Linear(d_model , 3 * d_model)
|
84 |
+
self.linear_layer = nn.Linear(d_model, d_model)
|
85 |
+
|
86 |
+
def forward(self, x, mask):
|
87 |
+
batch_size, sequence_length, d_model = x.size()
|
88 |
+
qkv = self.qkv_layer(x)
|
89 |
+
qkv = qkv.reshape(batch_size, sequence_length, self.num_heads, 3 * self.head_dim)
|
90 |
+
qkv = qkv.permute(0, 2, 1, 3)
|
91 |
+
q, k, v = qkv.chunk(3, dim=-1)
|
92 |
+
values, attention = scaled_dot_product(q, k, v, mask)
|
93 |
+
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, self.num_heads * self.head_dim)
|
94 |
+
out = self.linear_layer(values)
|
95 |
+
return out
|
96 |
+
|
97 |
+
|
98 |
+
class LayerNormalization(nn.Module):
|
99 |
+
def __init__(self, parameters_shape, eps=1e-5):
|
100 |
+
super().__init__()
|
101 |
+
self.parameters_shape=parameters_shape
|
102 |
+
self.eps=eps
|
103 |
+
self.gamma = nn.Parameter(torch.ones(parameters_shape))
|
104 |
+
self.beta = nn.Parameter(torch.zeros(parameters_shape))
|
105 |
+
|
106 |
+
def forward(self, inputs):
|
107 |
+
dims = [-(i + 1) for i in range(len(self.parameters_shape))]
|
108 |
+
mean = inputs.mean(dim=dims, keepdim=True)
|
109 |
+
var = ((inputs - mean) ** 2).mean(dim=dims, keepdim=True)
|
110 |
+
std = (var + self.eps).sqrt()
|
111 |
+
y = (inputs - mean) / std
|
112 |
+
out = self.gamma * y + self.beta
|
113 |
+
return out
|
114 |
+
|
115 |
+
|
116 |
+
class PositionwiseFeedForward(nn.Module):
|
117 |
+
def __init__(self, d_model, hidden, drop_prob=0.1):
|
118 |
+
super(PositionwiseFeedForward, self).__init__()
|
119 |
+
self.linear1 = nn.Linear(d_model, hidden)
|
120 |
+
self.linear2 = nn.Linear(hidden, d_model)
|
121 |
+
self.relu = nn.ReLU()
|
122 |
+
self.dropout = nn.Dropout(p=drop_prob)
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
x = self.linear1(x)
|
126 |
+
x = self.relu(x)
|
127 |
+
x = self.dropout(x)
|
128 |
+
x = self.linear2(x)
|
129 |
+
return x
|
130 |
+
|
131 |
+
|
132 |
+
class EncoderLayer(nn.Module):
|
133 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
|
134 |
+
super(EncoderLayer, self).__init__()
|
135 |
+
self.attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
|
136 |
+
self.norm1 = LayerNormalization(parameters_shape=[d_model])
|
137 |
+
self.dropout1 = nn.Dropout(p=drop_prob)
|
138 |
+
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
|
139 |
+
self.norm2 = LayerNormalization(parameters_shape=[d_model])
|
140 |
+
self.dropout2 = nn.Dropout(p=drop_prob)
|
141 |
+
|
142 |
+
def forward(self, x, self_attention_mask):
|
143 |
+
residual_x = x.clone()
|
144 |
+
x = self.attention(x, mask=self_attention_mask)
|
145 |
+
x = self.dropout1(x)
|
146 |
+
x = self.norm1(x + residual_x)
|
147 |
+
residual_x = x.clone()
|
148 |
+
x = self.ffn(x)
|
149 |
+
x = self.dropout2(x)
|
150 |
+
x = self.norm2(x + residual_x)
|
151 |
+
return x
|
152 |
+
|
153 |
+
class SequentialEncoder(nn.Sequential):
|
154 |
+
def forward(self, *inputs):
|
155 |
+
x, self_attention_mask = inputs
|
156 |
+
for module in self._modules.values():
|
157 |
+
x = module(x, self_attention_mask)
|
158 |
+
return x
|
159 |
+
|
160 |
+
class Encoder(nn.Module):
|
161 |
+
def __init__(self,
|
162 |
+
d_model,
|
163 |
+
ffn_hidden,
|
164 |
+
num_heads,
|
165 |
+
drop_prob,
|
166 |
+
num_layers,
|
167 |
+
max_sequence_length,
|
168 |
+
language_to_index,
|
169 |
+
START_TOKEN,
|
170 |
+
END_TOKEN,
|
171 |
+
PADDING_TOKEN):
|
172 |
+
super().__init__()
|
173 |
+
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
174 |
+
self.layers = SequentialEncoder(*[EncoderLayer(d_model, ffn_hidden, num_heads, drop_prob)
|
175 |
+
for _ in range(num_layers)])
|
176 |
+
|
177 |
+
def forward(self, x, self_attention_mask, start_token, end_token):
|
178 |
+
x = self.sentence_embedding(x, start_token, end_token)
|
179 |
+
x = self.layers(x, self_attention_mask)
|
180 |
+
return x
|
181 |
+
|
182 |
+
|
183 |
+
class MultiHeadCrossAttention(nn.Module):
|
184 |
+
def __init__(self, d_model, num_heads):
|
185 |
+
super().__init__()
|
186 |
+
self.d_model = d_model
|
187 |
+
self.num_heads = num_heads
|
188 |
+
self.head_dim = d_model // num_heads
|
189 |
+
self.kv_layer = nn.Linear(d_model , 2 * d_model)
|
190 |
+
self.q_layer = nn.Linear(d_model , d_model)
|
191 |
+
self.linear_layer = nn.Linear(d_model, d_model)
|
192 |
+
|
193 |
+
def forward(self, x, y, mask):
|
194 |
+
batch_size, sequence_length, d_model = x.size() # in practice, this is the same for both languages...so we can technically combine with normal attention
|
195 |
+
kv = self.kv_layer(x)
|
196 |
+
q = self.q_layer(y)
|
197 |
+
kv = kv.reshape(batch_size, sequence_length, self.num_heads, 2 * self.head_dim)
|
198 |
+
q = q.reshape(batch_size, sequence_length, self.num_heads, self.head_dim)
|
199 |
+
kv = kv.permute(0, 2, 1, 3)
|
200 |
+
q = q.permute(0, 2, 1, 3)
|
201 |
+
k, v = kv.chunk(2, dim=-1)
|
202 |
+
values, attention = scaled_dot_product(q, k, v, mask) # We don't need the mask for cross attention, removing in outer function!
|
203 |
+
values = values.permute(0, 2, 1, 3).reshape(batch_size, sequence_length, d_model)
|
204 |
+
out = self.linear_layer(values)
|
205 |
+
return out
|
206 |
+
|
207 |
+
|
208 |
+
class DecoderLayer(nn.Module):
|
209 |
+
def __init__(self, d_model, ffn_hidden, num_heads, drop_prob):
|
210 |
+
super(DecoderLayer, self).__init__()
|
211 |
+
self.self_attention = MultiHeadAttention(d_model=d_model, num_heads=num_heads)
|
212 |
+
self.layer_norm1 = LayerNormalization(parameters_shape=[d_model])
|
213 |
+
self.dropout1 = nn.Dropout(p=drop_prob)
|
214 |
+
|
215 |
+
self.encoder_decoder_attention = MultiHeadCrossAttention(d_model=d_model, num_heads=num_heads)
|
216 |
+
self.layer_norm2 = LayerNormalization(parameters_shape=[d_model])
|
217 |
+
self.dropout2 = nn.Dropout(p=drop_prob)
|
218 |
+
|
219 |
+
self.ffn = PositionwiseFeedForward(d_model=d_model, hidden=ffn_hidden, drop_prob=drop_prob)
|
220 |
+
self.layer_norm3 = LayerNormalization(parameters_shape=[d_model])
|
221 |
+
self.dropout3 = nn.Dropout(p=drop_prob)
|
222 |
+
|
223 |
+
def forward(self, x, y, self_attention_mask, cross_attention_mask):
|
224 |
+
_y = y.clone()
|
225 |
+
y = self.self_attention(y, mask=self_attention_mask)
|
226 |
+
y = self.dropout1(y)
|
227 |
+
y = self.layer_norm1(y + _y)
|
228 |
+
|
229 |
+
_y = y.clone()
|
230 |
+
y = self.encoder_decoder_attention(x, y, mask=cross_attention_mask)
|
231 |
+
y = self.dropout2(y)
|
232 |
+
y = self.layer_norm2(y + _y)
|
233 |
+
|
234 |
+
_y = y.clone()
|
235 |
+
y = self.ffn(y)
|
236 |
+
y = self.dropout3(y)
|
237 |
+
y = self.layer_norm3(y + _y)
|
238 |
+
return y
|
239 |
+
|
240 |
+
|
241 |
+
class SequentialDecoder(nn.Sequential):
|
242 |
+
def forward(self, *inputs):
|
243 |
+
x, y, self_attention_mask, cross_attention_mask = inputs
|
244 |
+
for module in self._modules.values():
|
245 |
+
y = module(x, y, self_attention_mask, cross_attention_mask)
|
246 |
+
return y
|
247 |
+
|
248 |
+
class Decoder(nn.Module):
|
249 |
+
def __init__(self,
|
250 |
+
d_model,
|
251 |
+
ffn_hidden,
|
252 |
+
num_heads,
|
253 |
+
drop_prob,
|
254 |
+
num_layers,
|
255 |
+
max_sequence_length,
|
256 |
+
language_to_index,
|
257 |
+
START_TOKEN,
|
258 |
+
END_TOKEN,
|
259 |
+
PADDING_TOKEN):
|
260 |
+
super().__init__()
|
261 |
+
self.sentence_embedding = SentenceEmbedding(max_sequence_length, d_model, language_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
262 |
+
self.layers = SequentialDecoder(*[DecoderLayer(d_model, ffn_hidden, num_heads, drop_prob) for _ in range(num_layers)])
|
263 |
+
|
264 |
+
def forward(self, x, y, self_attention_mask, cross_attention_mask, start_token, end_token):
|
265 |
+
y = self.sentence_embedding(y, start_token, end_token)
|
266 |
+
y = self.layers(x, y, self_attention_mask, cross_attention_mask)
|
267 |
+
return y
|
268 |
+
|
269 |
+
|
270 |
+
class Transformer(nn.Module):
|
271 |
+
def __init__(self,
|
272 |
+
d_model,
|
273 |
+
ffn_hidden,
|
274 |
+
num_heads,
|
275 |
+
drop_prob,
|
276 |
+
num_layers,
|
277 |
+
max_sequence_length,
|
278 |
+
kn_vocab_size,
|
279 |
+
english_to_index,
|
280 |
+
hindi_to_index,
|
281 |
+
START_TOKEN,
|
282 |
+
END_TOKEN,
|
283 |
+
PADDING_TOKEN
|
284 |
+
):
|
285 |
+
super().__init__()
|
286 |
+
self.encoder = Encoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, english_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
287 |
+
self.decoder = Decoder(d_model, ffn_hidden, num_heads, drop_prob, num_layers, max_sequence_length, hindi_to_index, START_TOKEN, END_TOKEN, PADDING_TOKEN)
|
288 |
+
self.linear = nn.Linear(d_model, kn_vocab_size)
|
289 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
290 |
+
|
291 |
+
def forward(self,
|
292 |
+
x,
|
293 |
+
y,
|
294 |
+
encoder_self_attention_mask=None,
|
295 |
+
decoder_self_attention_mask=None,
|
296 |
+
decoder_cross_attention_mask=None,
|
297 |
+
enc_start_token=False,
|
298 |
+
enc_end_token=False,
|
299 |
+
dec_start_token=False, # We should make this true
|
300 |
+
dec_end_token=False): # x, y are batch of sentences
|
301 |
+
x = self.encoder(x, encoder_self_attention_mask, start_token=enc_start_token, end_token=enc_end_token)
|
302 |
+
out = self.decoder(x, y, decoder_self_attention_mask, decoder_cross_attention_mask, start_token=dec_start_token, end_token=dec_end_token)
|
303 |
+
out = self.linear(out)
|
304 |
+
return out
|
transformer3layer.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|