upload
Browse files- 1_Pooling/config.json +7 -0
- README.md +236 -0
- config.json +40 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
    	
        1_Pooling/config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "word_embedding_dimension": 1024,
         | 
| 3 | 
            +
              "pooling_mode_cls_token": true,
         | 
| 4 | 
            +
              "pooling_mode_mean_tokens": false,
         | 
| 5 | 
            +
              "pooling_mode_max_tokens": false,
         | 
| 6 | 
            +
              "pooling_mode_mean_sqrt_len_tokens": false
         | 
| 7 | 
            +
            }
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,239 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: mit
         | 
|  | |
|  | |
|  | |
| 3 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: mit
         | 
| 3 | 
            +
            language:
         | 
| 4 | 
            +
            - zh
         | 
| 5 | 
            +
            pipeline_tag: sentence-similarity
         | 
| 6 | 
             
            ---
         | 
| 7 | 
            +
            <h1 align="center">FlagEmbedding</h1>
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            <h4 align="center">
         | 
| 11 | 
            +
                <p>
         | 
| 12 | 
            +
                    <a href=#model-list>Model List</a> | 
         | 
| 13 | 
            +
                    <a href=#usage>Usage</a>  |
         | 
| 14 | 
            +
                    <a href="#evaluation">Evaluation</a> |
         | 
| 15 | 
            +
                    <a href="#train">Train</a> |
         | 
| 16 | 
            +
                    <a href="#contact">Contact</a> |
         | 
| 17 | 
            +
                    <a href="#license">License</a> 
         | 
| 18 | 
            +
                <p>
         | 
| 19 | 
            +
            </h4>
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            More details please refer to our github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            [English](README.md) | [中文](README_zh.md)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification,  clustering, or semantic search.
         | 
| 26 | 
            +
            And it also can be used in vector database for LLMs.
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ************* 🌟**Updates**🌟 *************
         | 
| 29 | 
            +
            - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
         | 
| 30 | 
            +
            - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!**  
         | 
| 31 | 
            +
            - 08/01/2023: We release the Chinese Massive Text Embedding Benchmark (**C-MTEB**), consisting of 31 test dataset.   
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            ## Model List
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            `bge` is short for `BAAI general embedding`.
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            |              Model              | Language | Description | query instruction for retrieval |
         | 
| 39 | 
            +
            |:-------------------------------|:--------:| :--------:| :--------:|
         | 
| 40 | 
            +
            |  [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) |   English |  **rank 1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: `  |
         | 
| 41 | 
            +
            |  [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) |   English |  **rank 2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: `  |
         | 
| 42 | 
            +
            |  [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) |   English | a small-scale model but with competitive performance  | `Represent this sentence for searching relevant passages: `  |
         | 
| 43 | 
            +
            |  [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) |   Chinese | **rank 1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/benchmark) benchmark | `为这个句子生成表示以用于检索相关文章:`  |
         | 
| 44 | 
            +
            |  [BAAI/bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) |   Chinese | This model is trained without instruction, and **rank 2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/benchmark) benchmark |   |
         | 
| 45 | 
            +
            |  [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) |   Chinese |  a base-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:`  |
         | 
| 46 | 
            +
            |  [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) |   Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:`  |
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
             | 
| 50 | 
            +
            ## Usage 
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            * **Using FlagEmbedding**
         | 
| 53 | 
            +
            ```
         | 
| 54 | 
            +
            pip install flag_embedding
         | 
| 55 | 
            +
            ```
         | 
| 56 | 
            +
            ```python
         | 
| 57 | 
            +
            from flag_embedding import FlagModel
         | 
| 58 | 
            +
            sentences = ["样例数据-1", "样例数据-2"]
         | 
| 59 | 
            +
            model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
         | 
| 60 | 
            +
            embeddings = model.encode(sentences)
         | 
| 61 | 
            +
            print(embeddings)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            # for retrieval task, please use encode_queries() which will automatically add the instruction to each query
         | 
| 64 | 
            +
            # corpus in retrieval task can still use encode() or encode_corpus()
         | 
| 65 | 
            +
            queries = ['query_1', 'query_2']
         | 
| 66 | 
            +
            passages = ["样例段落-1", "样例段落-2"]
         | 
| 67 | 
            +
            q_embeddings = model.encode_queries(queries)
         | 
| 68 | 
            +
            p_embeddings = model.encode(passages)
         | 
| 69 | 
            +
            scores = q_embeddings @ p_embeddings.T
         | 
| 70 | 
            +
            ```
         | 
| 71 | 
            +
            The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). 
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
         | 
| 74 | 
            +
             | 
| 75 | 
            +
             | 
| 76 | 
            +
            * **Using Sentence-Transformers**
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            ```
         | 
| 81 | 
            +
            pip install -U sentence-transformers
         | 
| 82 | 
            +
            ```
         | 
| 83 | 
            +
            ```python
         | 
| 84 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 85 | 
            +
            sentences = ["样例数据-1", "样例数据-2"]
         | 
| 86 | 
            +
            model = SentenceTransformer('BAAI/bge-large-zh')
         | 
| 87 | 
            +
            embeddings = model.encode(sentences, normalize_embeddings=True)
         | 
| 88 | 
            +
            print(embeddings)
         | 
| 89 | 
            +
            ```
         | 
| 90 | 
            +
            For retrieval task, 
         | 
| 91 | 
            +
            each query should start with a instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). 
         | 
| 92 | 
            +
            ```python
         | 
| 93 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 94 | 
            +
            queries = ["手机开不了机怎么办?"]
         | 
| 95 | 
            +
            passages = ["样例段落-1", "样例段落-2"]
         | 
| 96 | 
            +
            instruction = "为这个句子生成表示以用于检索相关文章:"
         | 
| 97 | 
            +
             | 
| 98 | 
            +
            model = SentenceTransformer('BAAI/bge-large-zh')
         | 
| 99 | 
            +
            q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
         | 
| 100 | 
            +
            p_embeddings = model.encode(passages, normalize_embeddings=True)
         | 
| 101 | 
            +
            scores = q_embeddings @ p_embeddings.T
         | 
| 102 | 
            +
            ```
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            * **Using HuggingFace Transformers**
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ```python
         | 
| 109 | 
            +
            from transformers import AutoTokenizer, AutoModel
         | 
| 110 | 
            +
            import torch
         | 
| 111 | 
            +
            # Sentences we want sentence embeddings for
         | 
| 112 | 
            +
            sentences = ["样例数据-1", "样例数据-2"]
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            # Load model from HuggingFace Hub
         | 
| 115 | 
            +
            tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
         | 
| 116 | 
            +
            model = AutoModel.from_pretrained('BAAI/bge-large-zh')
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            # Tokenize sentences
         | 
| 119 | 
            +
            encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
         | 
| 120 | 
            +
            # for retrieval task, add a instruction to query
         | 
| 121 | 
            +
            # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            # Compute token embeddings
         | 
| 124 | 
            +
            with torch.no_grad():
         | 
| 125 | 
            +
                model_output = model(**encoded_input)
         | 
| 126 | 
            +
                # Perform pooling. In this case, cls pooling.
         | 
| 127 | 
            +
                sentence_embeddings = model_output[0][:, 0]
         | 
| 128 | 
            +
            # normalize embeddings
         | 
| 129 | 
            +
            sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
         | 
| 130 | 
            +
            print("Sentence embeddings:", sentence_embeddings)
         | 
| 131 | 
            +
            ```
         | 
| 132 | 
            +
             | 
| 133 | 
            +
             | 
| 134 | 
            +
            ## Evaluation  
         | 
| 135 | 
            +
            `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
         | 
| 136 | 
            +
            More details and evaluation scripts see [benchemark](benchmark/README.md). 
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            - **MTEB**:   
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            | Model Name |  Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) |  STS (10) | Summarization (1) | Classification (12) |
         | 
| 141 | 
            +
            |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
         | 
| 142 | 
            +
            | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) |  1024 | 512 | **63.98** |  **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** | 
         | 
| 143 | 
            +
            | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) |  768 | 512 |  63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | 
         | 
| 144 | 
            +
            | [gte-large](https://huggingface.co/thenlper/gte-large) |  1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
         | 
| 145 | 
            +
            | [gte-base](https://huggingface.co/thenlper/gte-base) 	|  768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
         | 
| 146 | 
            +
            | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) |  1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
         | 
| 147 | 
            +
            | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) |  384 | 512 | 62.11 |  51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |  
         | 
| 148 | 
            +
            | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) |  768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
         | 
| 149 | 
            +
            | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) |  768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
         | 
| 150 | 
            +
            | [gte-small](https://huggingface.co/thenlper/gte-small) |  384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
         | 
| 151 | 
            +
            | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
         | 
| 152 | 
            +
            | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
         | 
| 153 | 
            +
            | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) |  768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
         | 
| 154 | 
            +
            | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) 	|  768 | 514 	| 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
         | 
| 155 | 
            +
            | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) 	|  4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
         | 
| 156 | 
            +
            | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) 	|  384 | 512 	| 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
         | 
| 157 | 
            +
            | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) 	|  384 | 512 	| 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
         | 
| 158 | 
            +
            | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) 	|  768 | 512 	| 56.00 | 41.88 | 41.1 	| 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
         | 
| 159 | 
            +
            | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) 	|  768 | 512 	| 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
             | 
| 163 | 
            +
            - **C-MTEB**:  
         | 
| 164 | 
            +
            We create a benchmark C-MTEB for Chinese text embedding which consists of  31 datasets from 6 tasks. 
         | 
| 165 | 
            +
            Please refer to [benchemark](benchmark/README.md) for a detailed introduction.
         | 
| 166 | 
            +
             
         | 
| 167 | 
            +
            | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
         | 
| 168 | 
            +
            |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
         | 
| 169 | 
            +
            | [**bge-large-zh**](https://huggingface.co/BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |  
         | 
| 170 | 
            +
            | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |   
         | 
| 171 | 
            +
            | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) |  768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |  
         | 
| 172 | 
            +
            | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 |  63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |  
         | 
| 173 | 
            +
            | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |  
         | 
| 174 | 
            +
            | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 |  57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |  
         | 
| 175 | 
            +
            | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 |  53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |  
         | 
| 176 | 
            +
            | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 |  44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 | 
         | 
| 177 | 
            +
            | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 |  47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |  
         | 
| 178 | 
            +
            | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |  
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            ## Train
         | 
| 184 | 
            +
            This section will introduce the way we used to train the general embedding. 
         | 
| 185 | 
            +
            The training scripts are in [flag_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/flag_embedding/baai_general_embedding/), 
         | 
| 186 | 
            +
            and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain/) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            **1. RetroMAE Pre-train**  
         | 
| 190 | 
            +
            We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE), 
         | 
| 191 | 
            +
            which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)). 
         | 
| 192 | 
            +
            The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720. 
         | 
| 193 | 
            +
            In retromae, the mask ratio of the encoder and decoder are 0.3, and 0.5 respectively.
         | 
| 194 | 
            +
            We used the AdamW optimizer and the learning rate is 2e-5.
         | 
| 195 | 
            +
             | 
| 196 | 
            +
            **Pre-training data**:
         | 
| 197 | 
            +
            - English: 
         | 
| 198 | 
            +
                - [Pile](https://pile.eleuther.ai/)
         | 
| 199 | 
            +
                - [wikipedia](https://huggingface.co/datasets/wikipedia)
         | 
| 200 | 
            +
                - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
         | 
| 201 | 
            +
            - Chinese: 
         | 
| 202 | 
            +
                - Subset of [wudao](https://github.com/BAAI-WuDao/Data)
         | 
| 203 | 
            +
                - [baidu-baike](https://baike.baidu.com/)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
             | 
| 206 | 
            +
            **2. Finetune**  
         | 
| 207 | 
            +
            We fine-tune the model using a contrastive objective. 
         | 
| 208 | 
            +
            The format of input data is a triple`(query, positive, negative)`. 
         | 
| 209 | 
            +
            Besides the negative in the triple, we also adopt in-batch negatives strategy. 
         | 
| 210 | 
            +
            We employ the cross-device negatives sharing method to share negatives among different GPUs, 
         | 
| 211 | 
            +
            which can dramatically **increase the number of negatives**.
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch). 
         | 
| 214 | 
            +
            We used the AdamW optimizer and the learning rate is 1e-5.
         | 
| 215 | 
            +
            The temperature for contrastive loss is 0.01.
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            For the version with `*-instrcution`, we add instruction to the query for the retrieval task in the training. 
         | 
| 218 | 
            +
            For English, the instruction is `Represent this sentence for searching relevant passages: `;
         | 
| 219 | 
            +
            For Chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
         | 
| 220 | 
            +
            In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            The finetune script is accessible in this repository: [flag_embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/flag_embedding/baai_general_embedding/README.md). 
         | 
| 224 | 
            +
            You can easily finetune your model with it.
         | 
| 225 | 
            +
             | 
| 226 | 
            +
            **Training data**:
         | 
| 227 | 
            +
             | 
| 228 | 
            +
            - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            - For Chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
         | 
| 231 | 
            +
             | 
| 232 | 
            +
            **The data collection is to be released in the future.**
         | 
| 233 | 
            +
             | 
| 234 | 
            +
            We will continually update the embedding models and training codes, 
         | 
| 235 | 
            +
            hoping to promote the development of the embedding model community.
         | 
| 236 | 
            +
             | 
| 237 | 
            +
             | 
| 238 | 
            +
            ## License
         | 
| 239 | 
            +
            FlagEmbedding is licensed under [MIT License](). The released models can be used for commercial purposes free of charge.
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,40 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/root/.cache/torch/sentence_transformers/BAAI_bge-large-zh/",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "BertModel"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attention_probs_dropout_prob": 0.1,
         | 
| 7 | 
            +
              "bos_token_id": 0,
         | 
| 8 | 
            +
              "classifier_dropout": null,
         | 
| 9 | 
            +
              "directionality": "bidi",
         | 
| 10 | 
            +
              "eos_token_id": 2,
         | 
| 11 | 
            +
              "hidden_act": "gelu",
         | 
| 12 | 
            +
              "hidden_dropout_prob": 0.1,
         | 
| 13 | 
            +
              "hidden_size": 1024,
         | 
| 14 | 
            +
              "id2label": {
         | 
| 15 | 
            +
                "0": "LABEL_0"
         | 
| 16 | 
            +
              },
         | 
| 17 | 
            +
              "initializer_range": 0.02,
         | 
| 18 | 
            +
              "intermediate_size": 4096,
         | 
| 19 | 
            +
              "label2id": {
         | 
| 20 | 
            +
                "LABEL_0": 0
         | 
| 21 | 
            +
              },
         | 
| 22 | 
            +
              "layer_norm_eps": 1e-12,
         | 
| 23 | 
            +
              "max_position_embeddings": 512,
         | 
| 24 | 
            +
              "model_type": "bert",
         | 
| 25 | 
            +
              "num_attention_heads": 16,
         | 
| 26 | 
            +
              "num_hidden_layers": 24,
         | 
| 27 | 
            +
              "output_past": true,
         | 
| 28 | 
            +
              "pad_token_id": 0,
         | 
| 29 | 
            +
              "pooler_fc_size": 768,
         | 
| 30 | 
            +
              "pooler_num_attention_heads": 12,
         | 
| 31 | 
            +
              "pooler_num_fc_layers": 3,
         | 
| 32 | 
            +
              "pooler_size_per_head": 128,
         | 
| 33 | 
            +
              "pooler_type": "first_token_transform",
         | 
| 34 | 
            +
              "position_embedding_type": "absolute",
         | 
| 35 | 
            +
              "torch_dtype": "float32",
         | 
| 36 | 
            +
              "transformers_version": "4.30.0",
         | 
| 37 | 
            +
              "type_vocab_size": 2,
         | 
| 38 | 
            +
              "use_cache": true,
         | 
| 39 | 
            +
              "vocab_size": 21128
         | 
| 40 | 
            +
            }
         | 
    	
        config_sentence_transformers.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "__version__": {
         | 
| 3 | 
            +
                "sentence_transformers": "2.2.2",
         | 
| 4 | 
            +
                "transformers": "4.28.1",
         | 
| 5 | 
            +
                "pytorch": "1.13.0+cu117"
         | 
| 6 | 
            +
              }
         | 
| 7 | 
            +
            }
         | 
    	
        modules.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            [
         | 
| 2 | 
            +
              {
         | 
| 3 | 
            +
                "idx": 0,
         | 
| 4 | 
            +
                "name": "0",
         | 
| 5 | 
            +
                "path": "",
         | 
| 6 | 
            +
                "type": "sentence_transformers.models.Transformer"
         | 
| 7 | 
            +
              },
         | 
| 8 | 
            +
              {
         | 
| 9 | 
            +
                "idx": 1,
         | 
| 10 | 
            +
                "name": "1",
         | 
| 11 | 
            +
                "path": "1_Pooling",
         | 
| 12 | 
            +
                "type": "sentence_transformers.models.Pooling"
         | 
| 13 | 
            +
              }
         | 
| 14 | 
            +
            ]
         | 
    	
        pytorch_model.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:bf84a56fb045c24e090495195584a3922c3e4204107f0bba8b79c11f67a207f2
         | 
| 3 | 
            +
            size 1302220525
         | 
    	
        sentence_bert_config.json
    ADDED
    
    | @@ -0,0 +1,4 @@ | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "max_seq_length": 512,
         | 
| 3 | 
            +
              "do_lower_case": true
         | 
| 4 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "cls_token": "[CLS]",
         | 
| 3 | 
            +
              "mask_token": "[MASK]",
         | 
| 4 | 
            +
              "pad_token": "[PAD]",
         | 
| 5 | 
            +
              "sep_token": "[SEP]",
         | 
| 6 | 
            +
              "unk_token": "[UNK]"
         | 
| 7 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,15 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 3 | 
            +
              "cls_token": "[CLS]",
         | 
| 4 | 
            +
              "do_basic_tokenize": true,
         | 
| 5 | 
            +
              "do_lower_case": true,
         | 
| 6 | 
            +
              "mask_token": "[MASK]",
         | 
| 7 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 8 | 
            +
              "never_split": null,
         | 
| 9 | 
            +
              "pad_token": "[PAD]",
         | 
| 10 | 
            +
              "sep_token": "[SEP]",
         | 
| 11 | 
            +
              "strip_accents": null,
         | 
| 12 | 
            +
              "tokenize_chinese_chars": true,
         | 
| 13 | 
            +
              "tokenizer_class": "BertTokenizer",
         | 
| 14 | 
            +
              "unk_token": "[UNK]"
         | 
| 15 | 
            +
            }
         | 
    	
        vocab.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
