Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
4 |
-
- zh
|
5 |
- en
|
|
|
6 |
|
7 |
tags:
|
8 |
- mteb
|
9 |
model-index:
|
10 |
-
- name: bge-reranker-
|
11 |
results:
|
12 |
- task:
|
13 |
type: Reranking
|
@@ -19,9 +19,9 @@ model-index:
|
|
19 |
revision: None
|
20 |
metrics:
|
21 |
- type: map
|
22 |
-
value:
|
23 |
- type: mrr
|
24 |
-
value: 84.
|
25 |
- task:
|
26 |
type: Reranking
|
27 |
dataset:
|
@@ -32,9 +32,9 @@ model-index:
|
|
32 |
revision: None
|
33 |
metrics:
|
34 |
- type: map
|
35 |
-
value: 84.
|
36 |
- type: mrr
|
37 |
-
value: 86.
|
38 |
- task:
|
39 |
type: Reranking
|
40 |
dataset:
|
@@ -45,9 +45,9 @@ model-index:
|
|
45 |
revision: None
|
46 |
metrics:
|
47 |
- type: map
|
48 |
-
value:
|
49 |
- type: mrr
|
50 |
-
value:
|
51 |
- task:
|
52 |
type: Reranking
|
53 |
dataset:
|
@@ -58,9 +58,9 @@ model-index:
|
|
58 |
revision: None
|
59 |
metrics:
|
60 |
- type: map
|
61 |
-
value: 67.
|
62 |
- type: mrr
|
63 |
-
value: 77.
|
64 |
---
|
65 |
|
66 |
|
@@ -74,31 +74,33 @@ model-index:
|
|
74 |
<a href=#usage>Usage</a> |
|
75 |
<a href="#evaluation">Evaluation</a> |
|
76 |
<a href="#train">Train</a> |
|
77 |
-
<a href="#contact">Contact</a> |
|
78 |
<a href="#citation">Citation</a> |
|
79 |
<a href="#license">License</a>
|
80 |
<p>
|
81 |
</h4>
|
82 |
|
83 |
-
More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)
|
84 |
|
85 |
|
86 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
87 |
|
|
|
88 |
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
|
89 |
|
90 |
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
91 |
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
92 |
-
- **
|
93 |
-
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
94 |
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
95 |
|
96 |
## News
|
|
|
|
|
97 |
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
98 |
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
99 |
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
100 |
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
|
101 |
-
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
|
102 |
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
103 |
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
104 |
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
@@ -164,7 +166,8 @@ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/e
|
|
164 |
Some suggestions:
|
165 |
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
166 |
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
167 |
-
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results.
|
|
|
168 |
|
169 |
|
170 |
</details>
|
@@ -503,10 +506,6 @@ The data format is the same as embedding model, so you can fine-tune it easily f
|
|
503 |
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
504 |
|
505 |
|
506 |
-
## Contact
|
507 |
-
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
|
508 |
-
You also can email Shitao Xiao([email protected]) and Zheng Liu([email protected]).
|
509 |
-
|
510 |
|
511 |
## Citation
|
512 |
|
@@ -524,5 +523,4 @@ If you find this repository useful, please consider giving a star :star: and cit
|
|
524 |
```
|
525 |
|
526 |
## License
|
527 |
-
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
528 |
-
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
language:
|
|
|
4 |
- en
|
5 |
+
- zh
|
6 |
|
7 |
tags:
|
8 |
- mteb
|
9 |
model-index:
|
10 |
+
- name: bge-reranker-base
|
11 |
results:
|
12 |
- task:
|
13 |
type: Reranking
|
|
|
19 |
revision: None
|
20 |
metrics:
|
21 |
- type: map
|
22 |
+
value: 81.27206722525007
|
23 |
- type: mrr
|
24 |
+
value: 84.14238095238095
|
25 |
- task:
|
26 |
type: Reranking
|
27 |
dataset:
|
|
|
32 |
revision: None
|
33 |
metrics:
|
34 |
- type: map
|
35 |
+
value: 84.10369934291236
|
36 |
- type: mrr
|
37 |
+
value: 86.79376984126984
|
38 |
- task:
|
39 |
type: Reranking
|
40 |
dataset:
|
|
|
45 |
revision: None
|
46 |
metrics:
|
47 |
- type: map
|
48 |
+
value: 35.4600511272538
|
49 |
- type: mrr
|
50 |
+
value: 34.602380952380946
|
51 |
- task:
|
52 |
type: Reranking
|
53 |
dataset:
|
|
|
58 |
revision: None
|
59 |
metrics:
|
60 |
- type: map
|
61 |
+
value: 67.27728847727172
|
62 |
- type: mrr
|
63 |
+
value: 77.1315192743764
|
64 |
---
|
65 |
|
66 |
|
|
|
74 |
<a href=#usage>Usage</a> |
|
75 |
<a href="#evaluation">Evaluation</a> |
|
76 |
<a href="#train">Train</a> |
|
|
|
77 |
<a href="#citation">Citation</a> |
|
78 |
<a href="#license">License</a>
|
79 |
<p>
|
80 |
</h4>
|
81 |
|
82 |
+
**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).**
|
83 |
|
84 |
|
85 |
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
86 |
|
87 |
+
|
88 |
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
|
89 |
|
90 |
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
|
91 |
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
|
92 |
+
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
|
93 |
+
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
94 |
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
|
95 |
|
96 |
## News
|
97 |
+
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation.
|
98 |
+
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
|
99 |
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
|
100 |
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
|
101 |
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
|
102 |
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
|
103 |
+
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
|
104 |
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
|
105 |
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
|
106 |
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released
|
|
|
166 |
Some suggestions:
|
167 |
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
|
168 |
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
|
169 |
+
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results.
|
170 |
+
Hard negatives also are needed to fine-tune reranker. Refer to this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) for the fine-tuning for reranker
|
171 |
|
172 |
|
173 |
</details>
|
|
|
506 |
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
|
507 |
|
508 |
|
|
|
|
|
|
|
|
|
509 |
|
510 |
## Citation
|
511 |
|
|
|
523 |
```
|
524 |
|
525 |
## License
|
526 |
+
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|
|